Mol Pain
-
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is expressed in the sensory neurons and responds to various noxious stimuli including heat and capsaicin. The molecular properties of TRPV1 have been clearly examined; however, there are obvious individual differences in human sensitivity to thermal stimuli and capsaicin. ⋯ The sensitivities to burning pain and capsaicin of Japanese adult subjects were compared with their TRPV1 genome sequence, and we detected 6 single-nucleotide polymorphisms and 11 single-nucleotide polymorphisms related to burning pain and capsaicin sensitivity, respectively. In particular, homozygous I585V, a single-nucleotide polymorphism with amino acid substitution, significantly related to higher capsaicin sensitivity.
-
Meta Analysis Comparative Study
Comparison of the efficacy and safety of non-steroidal anti-inflammatory drugs for patients with primary dysmenorrhea: A network meta-analysis.
Objective Non-steroidal anti-inflammatory drugs are used as first-line treatment of primary dysmenorrhea, but there has been no optimal clinical choice among non-steroidal anti-inflammatory drugs yet. The present study was to assess the relative benefits of different common non-steroidal anti-inflammatory drugs for primary dysmenorrhea patients with a network meta-analysis. Methods Randomized controlled trials were screened by our criteria and included in the network meta-analysis. ⋯ According to the results of network analysis and surface under cumulative ranking curve, flurbiprofen was considered to be the best one among all the treatments in efficacy, and aspirin was worse than most of others. On the other hand, tiaprofenic acid and mefenamic acid were indicated as the safest drugs. Conclusion Considering the efficacy and safety, we recommended flurbiprofen and tiaprofenic acid as the optimal treatments for primary dysmenorrhea.
-
Background Severe postoperative pain remains a clinical problem that impacts patient's rehabilitation. The present work aims to investigate the role of Toll-like receptor-4 (TLR4) activation in wounded plantar tissue and dorsal root ganglion (DRG) in the genesis of postoperative pain and its underlying mechanisms. Results Postoperative pain was induced by plantar incision in rat hind paw. ⋯ Moreover, the plantar s.c. injection of TAK-242 or PDTC inhibited the increased expressions of p-p65, tumor necrosis factor-alpha, and interleukin-1 beta not only in local wounded plantar tissue but also dramatically in ipsilateral lumbar 4-5 DRGs. Conclusion TLR4/ nuclear factor-kappa B signaling activation in local injured tissue and DRG contribute to the development of postoperative pain via regulating pro-inflammatory cytokines release. Targeting TLR4/ nuclear factor-kappa B signaling in local tissue at early stage of surgery may be an effective strategy for the treatment of postoperative pain.
-
The medial prefrontal cortex is a key area for the regulation of pain and emotion. However, the functional involvement of the medial prefrontal cortex for visceral nociception, at the neuronal or synaptic level, is obscure yet. ⋯ Behaviorally, inhibition of gamma-aminobutyric acid-ergic synaptic transmission alleviated the visceral pain and anxiety. It is thus for the first time showing that the excitation-inhibition ratio is increased in the medial prefrontal cortex after chronic myocardial infarction, which may come from the reduced intrinsic activity of gamma-aminobutyric acid-ergic neurons and is important for regulating the angina pectoris and anxiety induced by chronic myocardial infarction.
-
Primary sensory neurons in the dorsal root ganglia and trigeminal ganglia are responsible for sensing mechanical and thermal stimuli, as well as detecting tissue damage. These neurons express ion channels that respond to thermal, mechanical, or chemical cues, conduct action potentials, and mediate transmitter release. These neurons also express a large number of G-protein coupled receptors, which are major transducers for extracellular signaling molecules, and their activation usually modulates the primary transduction pathways. ⋯ On the other hand, receptors that couple to Gi/o proteins, such as opioid or GABAB receptors, are generally inhibitory. Their activation counteracts the effect of Gs-stimulation by inhibiting adenylate cyclase, as well as exerts effects on ion channels, usually resulting in decreased excitability. This review will summarize knowledge on Gi-coupled receptors in sensory neurons, focusing on their roles in ion channel regulation and discuss their potential as targets for analgesic and antipruritic medications.