Mol Pain
-
Introduction Neuropathic pain is a debilitating condition. The importance of neuroimmune interactions in neuropathic pain has been evidenced by the involvement of different immune cells in peripheral and central sensitization of pathological pain. Macrophages and microglia are the most abundant immune cells activated in injured nerves and spinal cord, respectively. ⋯ Microglia activation in dorsal horn of lumbar spinal cord following partial sciatic nerve ligation was significantly inhibited with PLX5622 treatment in both preventive and reversal paradigms. Conclusion Macrophages in peripheral nerve and microglia in the spinal cord are required in the generation and maintenance of injury-associated neuropathic pain. Blocking macrophage-colony stimulating factor/colony stimulating factor 1 receptor signaling on these myeloid cells along the pain transmission pathway is an effective strategy to alleviate neuropathic pain.
-
Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors. ⋯ Spinal administration of sonic hedgehog signaling inhibitor cyclopamine prevents and reverses the induction and persistence of bone cancer pain without affecting normal pain sensitivity. Inhibiting sonic hedgehog signaling activation with cyclopamine, in vivo or in vitro, greatly suppresses tumor cell implantation-induced increase of intracellular Ca2+ and hyperexcitability of the sensory neurons and also the activation of GluN2B receptor and the subsequent Ca2+-dependent signals CaMKII and CREB in dorsal root ganglion and the spinal cord. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest that targeting sonic hedgehog signaling may be an effective approach for treating bone cancer pain.
-
Opioid receptors play an important role in mediating the spinal analgesia. The μ-opioid receptor is the major target of opioid drugs widely used in clinics. However, the regulatory mechanisms of analgesic effect and tolerance for clinical μ-opioid receptor-targeting opioids remain to be fully investigated. ⋯ Prolonged treatment of morphine led to μ-opioid receptor co-degradation with δ-opioid receptors. Furthermore, fentanyl and methadone, but not tramadol, induced the drug tolerance similar to morphine. Thus, the clinical μ-opioid receptor-targeting opioids including morphine, fentanyl, and methadone induce μ-opioid receptor co-internalization with δ-opioid receptors, which may be involved in the analgesic tolerance of these opioids.
-
Postoperative pain remains a complex problem that is difficult to manage in the clinical context, seriously affecting rehabilitation and the quality of life of patients after surgery. Nociceptors, of which the cell bodies are located in the dorsal root ganglion, are crucial for initiating and conducting the pain signal. The peripheral voltage-gated sodium channels, including Nav1.7, which is mainly expressed in the dorsal root ganglion, are key to understanding the mechanism underlying postoperative pain. ⋯ After pretreatment using SCN9A-RNAi-LV delivered via an intrathecal tube, immunohistochemistry showed that increased expression of Nav1.7 in L4-L6 dorsal root ganglion after plantar incision was inhibited, as also confirmed by quantitative polymerase chain reaction and Western blotting. Moreover, pain hypersensitivity was alleviated. These results suggested that Nav1.7 of L4-L6 dorsal root ganglion plays an important role in the development of pain hypersensitivity after plantar incision.
-
Spinal nociceptive transmission receives biphasic modulation from supraspinal structures. Recent studies demonstrate that the anterior cingulate cortex facilitates spinal excitatory synaptic transmission and nociceptive reflex. However, whether the top-down descending facilitation can cause long-term synaptic changes in spinal cord remains unclear. ⋯ Spinal application of N-methyl-D-aspartate (NMDA) receptor antagonist D-AP5 abolished this enhancement, suggesting that the activation of the NMDA receptor is required. Furthermore, spinal application of methysergide, a serotonin receptor antagonist, also blocked the anterior cingulate cortex-induced spinal long-term potentiation. Our results suggest that the anterior cingulate cortex stimulation can produce heterosynaptic form of long-term potentiation at the spinal cord dorsal horn, and this novel form of long-term potentiation may contribute to top-down long-term facilitation in chronic pain conditions.