Mol Pain
-
Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. ⋯ More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.
-
Meta Analysis
The effectiveness of therapeutic strategies for patients with radiculopathy: A network meta-analysis.
Objectives The aim of this network meta-analysis is to assess the effectiveness of therapeutic strategies for patients with radiculopathy, including physical, medical, surgical, and other therapies. Methods We electronically searched electronic databases including PubMed and Embase for randomized controlled trials. The response rate and visual analog scale of pain change were considered as primary outcomes. ⋯ According to the SUCRA results, corticosteroid, collar, and physiotherapy ranked the highest concerning response rate (SUCRA = 0.656, 0.652, and 0.610, respectively). Surgery, traction, and corticosteroid were superior to others in pain change (SUCRA = 0.866, 0.748, and 0.589, respectively). Conclusion According to the network meta-analysis result, we recommended surgery as the optimal treatment for radiculopathy patients; traction and corticosteroids were also recommended for their beneficial interventions.
-
Surgical incision-induced nociception contributes to the occurrence of postoperative cognitive dysfunction. However, the exact mechanisms involved remain unclear. Brain-derived neurotrophic factor (BDNF) has been demonstrated to improve fear learning ability. ⋯ ANA-12, a selective TrkB antagonist, abolished the improvement in fear learning and the activation of the BDNF signaling pathway induced by eutectic mixture of local anesthetics. Based on these results, surgical incision-induced postoperative pain, which was attenuated by postoperative analgesia, caused learning impairment in mice partially by inhibiting the BDNF signaling pathway. These findings provide insights into the mechanism underlying surgical incision-induced postoperative cognitive function impairment.
-
Voltage-gated sodium channel Nav1.7 is a threshold channel in peripheral dorsal root ganglion (DRG), trigeminal ganglion, and sympathetic ganglion neurons. Gain-of-function mutations in Nav1.7 have been shown to increase excitability in DRG neurons and have been linked to rare Mendelian and more common pain disorders. Discovery of Nav1.7 variants in patients with pain disorders may expand the spectrum of painful peripheral neuropathies associated with a well-defined molecular target, thereby providing a basis for more targeted approaches for treatment. ⋯ The patient responded to treatment with CBZ. Although CBZ did not depolarize activation of the mutant channel, it enhanced use-dependent inhibition. Our results demonstrate the presence of a novel gain-of-function variant of Nav1.7 in a patient with adult-onset painful peripheral neuropathy and the responsiveness of that patient to treatment with CBZ, which is likely due to the classical mechanism of use-dependent inhibition.
-
Neuropathic pain is a common chronic pain condition with mechanisms far clearly been elucidated. Mounting preclinical and clinical studies have shown neuropathic pain is highly associated with histone acetylation modification, which follows expression regulation of various pain-related molecules such as mGluR1/5, glutamate aspartate transporter, glutamate transporter-1, GAD65, Nav1.8, Kv4.3, μ-opioid receptor, brain-derived neurotrophic factor, and certain chemokines. As two types of pivotal enzymes involved in histone acetylation, histone deacetylases induce histone deacetylation to silence gene expression; in contrast, histone acetyl transferases facilitate histone acetylation to potentiate gene transcription. ⋯ In fact, numerous animal studies have suggested various histone deacetylase inhibitors, Sirt (class III histone deacetylases) activators, and histone acetyl transferases inhibitors are effective in neuropathic pain treatment via targeting specific epigenetic sites. In this review, we summarize the characteristics of the molecules and mechanisms of neuropathy-related acetylation, as well as the acetylation upregulation and blockade for neuropathic pain therapy. Finally, we will discuss the current drug advances focusing on neuropathy-related acetylation along with the underlying treatment mechanisms.