Mol Pain
-
Etomidate is a preferred drug for the induction of general anesthesia in cardiovascular risk patients. As with propofol and other perioperatively used anesthetics, the application of aqueous etomidate formulations causes an intensive burning pain upon injection. Such algogenic properties of etomidate have been attributed to the solubilizer propylene glycol which represents 35% of the solution administered clinically. The aim of this study was to investigate the underlying molecular mechanisms which lead to injection pain of aqueous etomidate formulations. ⋯ Data in our study provided evidence that pain upon injection of clinical aqueous etomidate formulations is not an unspecific effect of hyperosmolarity but rather due to a specific action mediated by activated nociceptive TRPA1 and TRPV1 ion channels in sensory neurons.
-
Vortioxetine is a multimodal antidepressant that potently antagonizes 5-HT3 serotonin receptors, inhibits the high-affinity serotonin transporter, activates 5-HT1A and 5-HT1B receptors, and antagonizes 5-HT1D and 5-HT7 receptors. 5-HT3 receptors largely mediate the hyperalgesic activity of serotonin that occurs in response to nerve injury. Activation of 5-HT3 receptors contributes to explain why selective serotonin reuptake inhibitors, such as fluoxetine, are not indicated in the treatment of neuropathic pain. Here, we studied the analgesic action of vortioxetine in the chronic constriction injury model of neuropathic pain in mice. ⋯ Vortioxetine enhanced mechanical pain thresholds in chronic constriction injury mice without changing motor activity, as assessed by the open-field and horizontal bar tests. None of the three antidepressants caused analgesia in the complete Freund's adjuvant model of chronic inflammatory pain. These findings raise the attractive possibility that vortioxetine can be effective in the treatment of neuropathic pain, particularly in patients with comorbid depression and cognitive dysfunction.
-
Background Offset analgesia is a disproportionate decrease of pain perception following a slight decrease of noxious thermal stimulus and attenuated in patients with neuropathic pain. We examined offset analgesia in patients with heterogeneous chronic pain disorders and used functional magnetic resonance imaging to explore modification of cerebral analgesic responses in comparison with healthy controls. Results We recruited seventeen patients with chronic pain and seventeen age-, sex-matched healthy controls. ⋯ The present findings might implicate both behavioral and cerebral plastic alterations contributing to chronification of pain. Clinical trial registry: The Japanese clinical trials registry (UMIN-CTR, No. UMIN000011253; http://www.umin.ac.jp/ctr /).
-
Objective To investigate brain morphometric changes in medication-overuse headache with excessive intake of caffeine-containing combination analgesics. Materials and methods We recruited 32 medication-overuse headache patients overusing caffeine-containing combination analgesics and 26 normal controls with matched sex and age. Magnetic resonance T1-weighted images were processed by automatic volume algorithm of brain regions over the whole brain according to the neuromorphometrics template. ⋯ In regression analyses, the volume of bilateral middle occipital gyrus had negative association with migraine duration, and the volume of right lateral orbital gyrus and right superior parietal lobe was negatively correlated with number of medications per month. Conclusions Volume changes of brain regions involved in affective and cognitive processing, visual and auditory perception, and pain sensory/discrimination suggested a particular role of those regions in the pathogenesis of medication-overuse headache overusing caffeine-containing combination analgesics. Morphometric changes in multiple visual processing areas and volume gain in lower headache frequency and less anxiety and depression may be specific features related to overusing caffeine-containing combination analgesics.
-
Spinal cord stimulation has become an important modality in pain treatment especially for neuropathic pain conditions refractory to pharmacotherapy. However, the molecular control of inhibitory and excitatory mechanisms observed after spinal cord stimulation are poorly understood. Here, we used RNA-seq to identify differences in the expression of genes and gene networks in spinal cord tissue from nerve-injured rats with and without repetitive conventional spinal cord stimulation treatment. ⋯ We also demonstrate that repetitive spinal cord stimulation represses transcription of several key synaptic signaling genes that encode scaffold proteins in the post-synaptic density. Our transcriptional studies suggest a potential relationship between specific genes and the therapeutic effects observed in patients undergoing conventional spinal cord stimulation after nerve injury. Furthermore, our results may help identify new therapeutic targets for improving the efficacy of conventional spinal cord stimulation and other chronic pain treatments.