Mol Pain
-
Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of β-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dorsal horn (SDH) under neuropathic pain. A spared nerve injury (SNI)-induced neuropathic pain model was established in rats. ⋯ SNI significantly increased the expression of p-ERK in spinal astrocytes but not microglia on day 29. β-elemene reversed spinal astrocytic ERK activation and subsequent upregulation of proinflammatory cytokines in SNI rats, with no effect on the expression of p38 and JNK in spinal glia. β-elemene also exerted antioxidative effects by increasing the levels of SOD and GSH-PX and decreasing the level of MDA. Our results suggest that SNI induces robust astrocytic ERK activation within the SDH in the late phase of neuropathic pain. β-elemene exerts remarkable analgesic effects on neuropathic pain, possibly by inhibiting spinal astrocytic ERK activation and subsequent neuroinflammatory processes. Our findings suggest that β-elemene might be a promising analgesic for the treatment of chronic pain.
-
Prolongation of postsurgical pain caused by pre-operative stress is a clinically significant problem, although the mechanisms are not fully understood. Stress can promote the pro-inflammatory activation of microglia, and the transcription factor CCAAT/enhancer-binding protein (C/EBP) β regulates pro-inflammatory gene expression in microglia. Therefore, we speculated that C/EBPβ in spinal microglia may have critical roles in the development of chronic postsurgical pain. ⋯ Subsequently, microinjection of C/EBPβ siRNA attenuated the duration of SPS-prolonged postoperative mechanical allodynia and inhibited microglial activation in the spinal cord. Conversely, mimicking this increase in C/EBPβ promoted microglial activation via pretreatment with a pre-injection of AAV5-C/EBPβ, leading to prolongation of postsurgical pain. Overall, these results suggested that spinal microglia may play key roles in prolongation of postsurgical pain induced by pre-operative stress and that C/EBPβ may be a potential target for disease treatment.
-
Abnormal pain has recently been estimated to affect ∼50 million adults each year within the United States. With many treatment options for abnormal pain, such as opioid analgesics, carrying numerous deleterious side effects, research into safer and more effective treatment options is crucial. To help elucidate the mechanisms controlling nociceptive sensitivity, the Drosophila melanogaster larval nociception model has been used to characterize well-conserved pathways through the use of genetic modification and/or injury to alter the sensitivity of experimental animals. ⋯ Underexpression of Armadillo resulted in hyposensitivity, while overexpression of wild-type Armadillo or expression of a degradation-resistant Armadillo resulted in hypersensitivity. Neither underexpression nor overexpression of Armadillo resulted in observed dendritic morphological changes that could contribute to behavioral phenotypes observed. These results showed that focused manipulation of Armadillo expression within the nociceptors is sufficient to modulate baseline response in the nociceptors to a noxious stimulus and that these changes are not shown to be associated with a morphogenetic effect.
-
Itch and pain are both unpleasant, but they are discrete sensations. Both of these sensations are transmitted by C-fibers and processed in laminae I-II of the dorsal horn. To examine whether pruriception modulates pain, we first confirmed the activation of cells in the itch-related circuits that were positive for gastrin-releasing peptide (GRP) and GRP receptor (GRPR) using a paw formalin injection model. ⋯ Exogenous intrathecal GRP infusion to the paw-formalin injection model not only showed significant reduction of pain behavior but also increased c-Fos in the inhibitory neurons in the dorsal horn. The anti-nociceptive effect of spinal GRP infusion was observed in the peripheral inflammation model (complete Freund's adjuvant injection model). In this study we suggest that painful stimuli activated itch-related neuronal circuits and uncovered the spinal activation of the itch-induced analgesic effect on acute and established inflammatory pain.
-
Methylene blue (MB) is an effective treatment for methemoglobinemia, ifosfamide-induced encephalopathy, cyanide poisoning, and refractory vasoplegia. However, clinical case reports and preclinical studies indicate potentially neurotoxic activity of MB at certain concentrations. The exact mechanisms of MB neurotoxicity are not known, and while the effects of MB on neuronal tissue from different brain regions and myenteric ganglia have been examined, its effects on primary afferent neurons from dorsal root ganglia (DRG) have not been studied. ⋯ MB induced dose-dependent toxicity in peripheral neurons, in vitro. These findings are consistent with studies in brain and myenteric ganglion neurons showing increased neuronal loss and altered membrane electrical properties after MB application. Further research is needed to parse out the toxicity profile for MB to minimize damage to neuronal structures and reduce side effects in clinical settings.