Mol Pain
-
Previous studies have confirmed the relationship between chloride homeostasis and pain. However, the role of sodium potassium chloride co-transporter isoform 1 (NKCC1) in dorsal horn and dorsal root ganglion neurons (DRGs) in spinal cord injury (SCI)-induced neuropathic pain (NP) remains inconclusive. Therefore, we aimed to explore whether suppression of NKCC1 in the spinal cord and DRGs alleviate the NP of adult rats with thoracic spinal cord contusion. ⋯ Our results revealed that NKCC1 protein expression in the spinal cord and DRGs was significantly up-regulated in rats with SCI. Intraperitoneal treatment of bumetanide (an NKCC1 inhibitor) reversed the expression of NKCC1 in the dorsal horn and DRGs and ameliorated mechanical ectopic pain and thermal hypersensitivities in the SCI rats. Our study demonstrated the occurrence of NKCC1 overexpression in the spinal cord and DRGs in a rodent model of NP and indicated that changes in the peripheral nervous system also play a major role in promoting pain sensitization after SCI.
-
Bone cancer pain (BCP) is severe chronic pain caused by tumor metastasis to the bones, often resulting in significant skeletal remodeling and fractures. Currently, there is no curative treatment. Therefore, insight into the underlying mechanisms could guide the development of mechanism-based therapeutic strategies for BCP. ⋯ Intrathecal injection of NSC23766, a Rac1 inhibitor, reduced the persistence of BCP as well as reversed the remodeling of dendrites. Therefore, we concluded that activation of the Rac1/PAK1 signaling pathway in the spinal cord plays an important role in the development of BCP through remodeling of dendritic spines. Modulation of the Rac1/PAK1 pathway may be a potential strategy for BCP treatment.
-
Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. The present study focused on the CACNA1C gene, which encodes the α1C subunit of the Cav1.2 L-type Ca2+ channel (LTCC) that has been reported to be associated with neuropathic pain in previous studies. ⋯ Nociceptive transmission in neuropathic pain has been reported to involve Ca2+ influx from LTCCs, and the rs216009 polymorphism may be involved in CACNA1C expression, which regulates intracellular Ca2+ levels, leading to the vulnerability to PTP. Furthermore, psychological factors may lead to the development of PTP by modulating the descending pain inhibitory system. Altogether, homozygous C-allele carriers of the rs216009 SNP were more likely to be vulnerable to PTP, possibly through the regulation of intracellular Ca2+ levels and affective pain systems, such as those that mediate fear memory recall.
-
The development of the chronic neuropathic pain state often originates at the level of peripheral sensory neurons, whose abnormal function elicits central sensitization and maladaptive plasticity in the nociceptive circuits of the spinal dorsal horn. These changes eventually reach supraspinal areas bringing about cognitive and affective co-morbidities of chronic pain such as anxiety and depression. This transmission presumably relies on the function of spinal projection neurons at the origin of the anterolateral system (AS). ⋯ On the other hand, Phox2acKO attenuated the development of cold but not mechanical hyperalgesia, in behavioral paradigms that require the relay of nociceptive information to the brain. Furthermore, Phox2acKO attenuated anxio-depressive-like behaviors evoked by SNI, measured by performance in the open field test and tail suspension test. Thus, Phox2a AS neurons play a critical role in the generation and maintenance of chronic neuropathic pain.
-
Identification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. ⋯ In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.