Mol Pain
-
Fibromyalgia (FM) is a chronic musculoskeletal pain disorder primarily diagnosed in women. Historically, clinical literature focusing on cytokines and immune cells has been inconsistent. However, recent key studies show several layers of immune system dysfunction in FM. ⋯ Interestingly, IL-5 treatment induced place preference in mice previously injected with pH4.0 saline. Mice treated with IL-5 show limited changes in T-cell populations compared to controls, with a rescue in regulatory T-cells which positively correlates with improved mechanical hypersensitivity. The experiments in this study provide novel evidence that downregulation of regulatory T-cells play a role in chronic muscle pain pathology in the acidic saline model of FM and that IL-5 signaling is a promising target for future development of therapeutics.
-
Neurosensory disorders such as pain and pruritus remain a major health problem greatly impacting the quality of life, and often increasing the risk of mortality. Current pre-clinical models to investigate dysfunction of sensory neurons have shown a limited clinical translation, in part, by failing to mimic the compartmentalized nociceptor anatomy that exhibits a central compartment containing the soma and a peripheral one harboring the axon endings with distinct molecular and cellular environmental composition. Thus, there is a need to validate compartmentalized preclinical neurosensory models for investigating the pathophysiology of peripheral sensory disorders and to test drug candidates. ⋯ Furthermore, compartmentalized nociceptor primary cultures were amenable to co-culture with keratinocytes in the axonal compartment. Interaction of axonal endings with keratinocytes modulated neuronal responses, consistent with a crosstalk between both cell types. These findings pave the way towards translational pre-clinical sensory models for skin pathophysiological research and drug development.
-
Background: Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. ⋯ This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (Per2, Per3, Dbp). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.
-
Benzydamine is an active pharmaceutical compound used in the oral care pharmaceutical preparation as NSAID. Beside from its anti-inflammatory action, benzydamine local application effectively reliefs pain showing analgesic and anaesthetic properties. Benzydamine mechanism of action has been characterized on inflammatory cell types and mediators highlighting its capacity to inhibit pro-inflammatory mediators' synthesis and release. ⋯ This effect could be explained either by modulation of inflammatory and/or neuronal sensitizing signalling cascades or by direct modulation of proalgesic and action potential firing initiating ion channels. Apparently, the compound inhibited Nav1.8 channel but had no effect over Kv7.2, Kv7.3, TRPV1 and TRPA1. In conclusion, the obtained results strengthen the analgesic and anti-inflammatory effect of benzydamine, highlighting its mode of action on local pain and inflammatory signalling.
-
Background: Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. ⋯ However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. Conclusion: PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.