Mol Pain
-
The synaptic connections between dorsal root ganglia (DRG) and dorsal horn (DH) neurons are a crucial relay point for the transmission of painful stimuli. To delineate how synaptic plasticity may modulate the excitability of DH neurons, we have devised a microfluidic co-culture model that recapitulates the first sensory synapse using postnatal mouse sensory neurons. We show that DRG-DH co-cultures characterize salient features of the in vivo physiology of sensory neurons. ⋯ Selective NMDA and AMPA receptor blockade appreciably silences DH neuron responses, suggesting that glutamatergic signaling is maintained in vitro. Last, a surrogate model of peripheral nerve injury is introduced in the form of an axotomy, which results in elevated and prolonged calcium responses of DH neurons. Overall, the microfluidic mouse co-cultures provide a method advancement in the study of periphery-to-center pain signaling, where the potential of utilizing the platform for drug target identification is underscored.