Mol Pain
-
Chemotherapy drugs such as oxaliplatin can increase nociceptive neuron excitability to result in neuropathic pain in orofacial and other regions in patients following chemotherapy. However, mechanisms underlying chemotherapy-induced increases of nociceptive neuron excitability are not fully understood. Kv4.3 channels are voltage-gated K+ channels mediating A-type K+ (IA) currents to control neuronal excitability. ⋯ The amplitudes of IA currents were significantly reduced in these nociceptive-like V2 TG neurons of oxaliplatin-treated group. Furthermore, we found that the excitability of nociceptive-like V2 TG neurons was significantly higher in the oxaliplatin-treated group than in the control group. These findings raise a possibility that down-regulation of Kv4.3 channels and IA currents in nociceptive V2 TG neurons is an underlying mechanism of oxaliplatin-induced orofacial neuropathic pain.
-
Objective Previous studies of neuropathic pain have suggested that the P2X4 purinoceptor (P2X4R) in spinal microglia is essential for maintaining allodynia following nerve injury. However, little is known about its role in inflammatory soup-induced trigeminal allodynia, which closely mimics chronic migraine status. Here, we determined the contributions of P2X4R and related signaling pathways in an inflammatory soup-induced trigeminal allodynia model. ⋯ Double immunostaining indicated that p38 and brain-derived neurotrophic factor were mainly expressed in microglial cells, whereas excitatory amino acid transporter 3 was primarily expressed in trigeminal nucleus caudalis neurons. Conclusions These data indicate that microglial P2X4R is involved in the regulation of excitatory amino acid transporter 3 via brain-derived neurotrophic factor-tyrosine receptor kinase B signaling following repeated inflammatory dural stimulation. Microglial P2X4R activation and microglia-neuron interactions in the trigeminal nucleus caudalis may play a role in the pathogenesis of migraine chronicity, and the modulation of P2X4R activation might be a potential therapeutic strategy.
-
Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. ⋯ Intriguingly, small interfering RNA-transfected knockdown of the migration inhibitory factor gene in methylglyoxal-treated skin keratinocytes increased expression of glyoxalase-I and intraepidermal nerve fibers in comparison with control small interfering RNA-transfected cells, which was decreased by induction of methylglyoxal. Conclusions Our findings suggest that migration inhibitory factor can aggravate diabetic neuropathy by suppressing glyoxalase-I and intraepidermal nerve fibers on the footpad skin lesions and provoke pain. Taken together, migration inhibitory factor might offer a pharmacological approach to alleviate pain syndromes in diabetic neuropathy.
-
Diabetic peripheral neuropathy is a major debilitating late complication of diabetes, which significantly reduces the quality of life in patients. Diabetic peripheral neuropathy is associated with a wide spectrum of sensory abnormalities, where in loss of sensation or hypoalgesia to applied external stimuli is paradoxically accompanied by debilitating tonic spontaneous pain. In numerous studies on animal models of diabetic peripheral neuropathy, behavioural measurements have been largely confined to analysis of evoked withdrawal to mechanical and thermal stimuli applied to dermatomes, whereas spontaneous, on-going pain has not been widely studied. ⋯ Neither early hypersensitivity nor late hypoalgesia were associated with markers of cellular stress in the dorsal root ganglia. Whereas significant neutrophil infiltration was observed in the dorsal root ganglia over both early and late stages post-Streptozotocin, T-cell infiltration in the dorsal root ganglia was prominent at late stages post-Streptozotocin. Thus, longitudinal analyses reveal that similar to patients with chronic diabetic peripheral neuropathy, mice show tonic pain despite sensory loss after several months in the Streptozotocin model, which is accompanied by neuroimmune interactions in the dorsal root ganglia.
-
Various small molecules act as neurotransmitters and orchestrate neural communication. Growing evidence suggests that not only classical neurotransmitters but also several small molecules, including amino acid derivatives, modulate synaptic transmission. As conditions of acute and chronic pain alter neuronal excitability in the nucleus accumbens, we hypothesized that small molecules released in the nucleus accumbens might play important roles in modulating the pain sensation. ⋯ We identified N-acetylaspartylglutamate as a potential pain modulator that is endogenously released in the nucleus accumbens. Infusion of N-acetylaspartylglutamate into the nucleus accumbens significantly attenuated the pain induced by the activation of sensory nerves through optical stimulation. These findings suggest that N-acetylaspartylglutamate released in the nucleus accumbens could modulate pain sensation.