Mol Pain
-
Background: Fentanyl and its analogs are extensively used for pain relief. However, their paradoxically pronociceptive effects often lead to increased opioids consumption and risk of chronic pain. Compared to other synthetic opioids, remifentanil has been strongly linked to acute opioid hyperalgesia after exposure [remifentanil-induced hyperalgesia (RIH)]. ⋯ The overexpression of miR-134-5p attenuated the hyperalgesic phenotype, excessive dendritic spine remodeling, excitatory synaptic structural plasticity, and Kainate receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in SDH resulting from remifentanil exposure. Besides, intrathecal injection of selective KA-R antagonist was able to reverse the GRIK3 membrane trafficking and relieved RIH. Conclusion: The miR-134-5p contributes to remifentanil-induced pronociceptive features via directly targeting Grik3 to modulate dendritic spine morphology and synaptic plasticity in spinal neurons.
-
Dynorphin A (1-17) (DynA17) has been identified as a key regulator of both sensory and affective dimensions of chronic pain. Following nerve injury, increases in DynA17 have been reported in the spinal and supraspinal areas involved in chronic pain. ⋯ Although heavily characterized at the behavioral level, how DynA17 mediates its effects at the cellular physiological level has not been investigated. In this report, we begin to decipher how DynA17 mediates its direct effects on mouse dorsal root ganglion (DRG) cells and how intrathecal administration modifies a key node in the pain axis, the periaqueductal gray These findings build on the plethora of literature defining DynA17 as a critical neuropeptide in the pathophysiology of chronic pain syndromes.
-
Traumatic neuropathic pain (TNP) is caused by traumatic damage to the somatosensory system and induces the presentation of allodynia and hyperalgesia. Mitochondrial dysfunction, neuroinflammation, and apoptosis are hallmarks in the pathogenesis of TNP. Recently, mitochondria-based therapy has emerged as a potential therapeutic intervention for diseases related to mitochondrial dysfunction. ⋯ The nerve ligation-induced glial activation and the expression of pro-inflammatory cytokines and apoptotic markers in the spinal cord were also repressed by MT. Consistently, exogenous mitochondria reversed the capsaicin-induced reduction of mitochondrial membrane potential and expression of pro-inflammatory cytokines and apoptotic markers in the primary DRG neurons in vitro. Our findings suggest that MT mitigates the spinal nerve ligation-induced apoptosis and neuroinflammation, potentially playing a role in providing neuroprotection against TNP.
-
Irritable bowel syndrome (IBS) is one of the typical representatives of chronic functional visceral pain that lacks effective treatment. Recently, attention has been given to the role of microglia in IBS, particularly the activation of spinal microglia and the subsequent release of Cathepsin S (Cat S), a proteolytic enzyme. However, the specific role of spinal Cat S in IBS remains to be elucidated. The purpose of this study is to investigate the mechanisms underlying the regulation of visceral hypersensitivity in IBS-like rats by Cat S. ⋯ Neonatal adverse stimulation might enhance the expression of spinal microglial Cat S, thereby activating the FKN/CX3CR1/p38 MAPK pathway and lead to visceral hypersensitivity in IBS-like rats. As a selective inhibitor of Cat S, LY3000328 could become a potential therapeutic option for IBS.
-
Music seems promising as an adjuvant pain treatment in humans, while its mechanism remains to be illustrated. In rodent models of chronic pain, few studies reported the analgesic effect of music. Recently, Zhou et al. stated that the analgesic effects of sound depended on a low (5 dB) signal-to-noise ratio (SNR) relative to ambient noise in mice. However, despite employing multiple behavioral analysis approaches, we were unable to extend these findings to a mice model of chronic pain listening to the 5 dB SNR.