Mol Pain
-
Affections are thought to regulate pain perception through the descending pain inhibitory system in the central nervous system. In this study, we examined in mice the affective change by inhalation of the lemon oil, which is well used for aromatherapy, and the effect of lemon odor on pain sensation. We also examined the anterior cingulate cortex (ACC) and descending pain inhibitory system to such regulation of pain. ⋯ These results suggest that the analgesic effect of lemon oil is induced by dopamine-related activation of ACC and the descending pain inhibitory system.
-
Cyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling. Our previous studies revealed that the expression of Cdk5 and its activator, p35, is upregulated in nociceptive neurons during peripheral inflammation. The aim of the present study was to characterize the involvement of Cdk5 in orofacial pain. Since mechanical hyperalgesia is the distinctive sign of many orofacial pain conditions, we adapted an existing orofacial stimulation test to assess the behavioral responses to mechanical stimulation in the trigeminal region of the transgenic mice with either reduced or increased Cdk5 activity. ⋯ Collectively, our findings demonstrate for the first time the important role of Cdk5 in orofacial mechanical nociception. Modulation of Cdk5 activity in primary sensory neurons makes it an attractive potential target for the development of novel analgesics that could be used to treat multiple orofacial pain conditions.
-
Our previous work demonstrated that persistent peripheral nociception (PPN) leads to synaptic plasticity and functional changes in the rat hippocampus. The protein kinase mTOR is a critical regulator of protein synthesis-dependent synaptic plasticity in the hippocampus as well as synaptic plasticity associated with central and peripheral pain sensitization. We examined the role of mTOR signaling in pain-associated entorhinal cortex (EC) - hippocampal synaptic plasticity to reveal possible cellular mechanisms underlying the effects of chronic pain on cognition and emotion. ⋯ We suggest that PPN-induced enhancement of synaptic plasticity in EC - hippocampal pathways and the behavioral effects of PPN are dependent on mTOR-S6K signaling.
-
ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. ⋯ We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.
-
Painful diabetic neuropathy (PDN) is a serious complication of diabetes mellitus that affects a large number of patients in many countries. The molecular mechanisms underlying the exaggerated nociception in PDN have not been established. Recently, duloxetine (DLX), a serotonin and noradrenaline re-uptake inhibitor, has been recommended as one of the first-line treatments of PDN in the United States Food and Drug Administration, the European Medicines Agency and the Japanese Guideline for the Pharmacologic Management of Neuropathic pain. Because selective serotonin re-uptake inhibitors show limited analgesic effects in PDN, we examined whether the potent analgesic effect of DLX contributes toward improving the pathologically aberrant noradrenaline homeostasis in diabetic models. ⋯ Impaired noradrenaline-mediated regulation of the spinal nociceptive network might underlie exaggerated nociception in PDN. DLX might exert its analgesic effect by selective enhancement of noradrenergic signals, thus counteracting this situation.