Mol Pain
-
Sodium channels play pivotal roles in health and diseases due to their ability to control cellular excitability. The pore-forming α-subunits (sodium channel alpha subunits) of the voltage-sensitive channels (i.e., Nav1.1-1.9) and the nonvoltage-dependent channel (i.e., Nax) share a common structural motif and selectivity for sodium ions. We hypothesized that the actin-based nonmuscle myosin II motor proteins, nonmuscle myosin heavy chain-IIA/myh9, and nonmuscle myosin heavy chain-IIB/myh10 might interact with sodium channel alpha subunits to play an important role in their transport, trafficking, and/or function. ⋯ Myh10 coexpression also hyperpolarized voltage-dependent activation and steady-state fast inactivation of Nav1.8 channels. In addition, coexpression of myh10 reduced ( P < 0.01) the offset of fast inactivation and the amplitude of the ramp currents of Nav1.8 channels. These results indicate that nonmuscle myosin heavy chain-IIs interact with sodium channel alpha subunits subunits in an isoform-dependent manner and influence their functional properties.
-
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. ⋯ Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
-
Background The enhanced expression of cytokines in the pathological states suggests that they have important roles in the initiation or maintenance of disease states.
-
Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. ⋯ Intriguingly, small interfering RNA-transfected knockdown of the migration inhibitory factor gene in methylglyoxal-treated skin keratinocytes increased expression of glyoxalase-I and intraepidermal nerve fibers in comparison with control small interfering RNA-transfected cells, which was decreased by induction of methylglyoxal. Conclusions Our findings suggest that migration inhibitory factor can aggravate diabetic neuropathy by suppressing glyoxalase-I and intraepidermal nerve fibers on the footpad skin lesions and provoke pain. Taken together, migration inhibitory factor might offer a pharmacological approach to alleviate pain syndromes in diabetic neuropathy.
-
Pain hypersensitivity resulting from peripheral nerve injury depends on pathological microglial activation in the dorsal horn of the spinal cord. This microglial activity is critically modulated by P2X7 receptors (P2X7R) and ATP stimulation of these receptors produces mechanical allodynia, a defining feature of neuropathic pain. Peripheral nerve injury increases P2X7R expression and potentiates its cation channel function in spinal microglia. ⋯ Intrathecal administration of this palmitoylated peptide (P2X7R379-389) transiently reversed mechanical allodynia caused by peripheral nerve injury in both male and female rats. Furthermore, targeting Y382-384 suppressed P2X7R-mediated release of cytokine tumor necrosis factor alpha and blocked the adoptive transfer of mechanical allodynia caused by intrathecal injection of P2X7R-stimulated microglia. Thus, Y382-384 site-specific modulation of P2X7R is an important microglial mechanism in neuropathic pain.