Bmc Med
-
Marburg virus disease is an acute haemorrhagic fever caused by Marburg virus. Marburg virus is zoonotic, maintained in nature in Egyptian fruit bats, with occasional spillover infections into humans and nonhuman primates. Although rare, sporadic cases and outbreaks occur in Africa, usually associated with exposure to bats in mines or caves, and sometimes with secondary human-to-human transmission. Outbreaks outside of Africa have also occurred due to importation of infected monkeys. Although all previous Marburg virus disease outbreaks have been brought under control without vaccination, there is nevertheless the potential for large outbreaks when implementation of public health measures is not possible or breaks down. Vaccines could thus be an important additional tool, and development of several candidate vaccines is under way. ⋯ Our study shows that various vaccination strategies can be effective in helping to control outbreaks of MVD, with the best approach varying with the particular epidemiologic circumstances of each outbreak.
-
Recent studies have highlighted the role of low-grade systemic inflammation in linking periodontitis to cardiovascular disease (CVD) outcomes, but many aspects remain unclear. This study examines the independent and reciprocal associations of periodontitis and low-grade systemic inflammation with all-cause and CVD mortality in a large-scale cohort. ⋯ Both periodontitis and inflammation were significantly associated with all-cause mortality and CVD mortality. On the additive scale, a substantial excess risk was observed due to the interaction of periodontitis and inflammation, suggesting that the greatest treatment benefit may be achieved in patients with both periodontitis and high systemic inflammation. As periodontal therapy has been reported to also reduce systemic inflammation, the possibility of a reduction in CVD mortality risk by anti-inflammatory treatments, including periodontal interventions, seems worthy of further investigation.
-
The widening of group-level socioeconomic differences in body mass index (BMI) has received considerable research attention. However, the predictive power of socioeconomic position (SEP) indicators at the individual level remains uncertain, as does the potential temporal variation in their predictive value. Examining this is important given the increasing incorporation of SEP indicators into predictive algorithms and calls to reduce social inequality to tackle the obesity epidemic. We thus investigated SEP differences in BMI over three decades of the obesity epidemic in England, comparing population-wide (SEP group differences in mean BMI) and individual-level (out-of-sample prediction of individuals' BMI) approaches to understanding social inequalities. ⋯ SEP has become increasingly important at the population (group difference) and individual (prediction) levels. However, predictive ability remains low, suggesting limited utility of including SEP in prediction algorithms. Assuming links are causal, abolishing SEP differences in BMI could have a large effect on population health but would neither reverse the obesity epidemic nor reduce much of the variation in BMI.
-
Genetics play an important role in risk for cardiometabolic diseases-including type 2 diabetes, cardiovascular disease and obesity. Existing research has explored the clinical utility of genetic risk tools such as polygenic risk scores-and whether interventions communicating genetic risk information using these tools can impact on individuals' cognitive appraisals of disease risk and/or preventative health behaviours. Previous systematic reviews suggest mixed results. To expand current understanding and address knowledge gaps, we undertook an interpretive, reflexive method of evidence synthesis-questioning the theoretical basis behind current interventions that communicate genetic risk information and exploring how the effects of genetic risk tools can be fully harnessed for cardiometabolic diseases. ⋯ PROSPERO CRD42021289269.
-
Vaccination has played a pivotal role in reducing the burden of COVID-19. Despite numerous studies highlighting its benefits in reducing the risk of severe disease and death, we still lack a quantitative understanding of how varying vaccination roll-out rates influence COVID-19 mortality. ⋯ Our analysis revealed that faster roll-outs were consistently associated with higher numbers of averted deaths, even in scenarios with lower overall coverage. This study offers valuable insights into future decision-making regarding infectious disease epidemic management through vaccination strategies. It accomplishes this by comparing various countries' relative performance in terms of timing, pace, and vaccination coverage, ultimately contributing to the prevention of COVID-19-related deaths.