Cochrane Db Syst Rev
-
Cochrane Db Syst Rev · Feb 2023
ReviewInterventions for preventing and treating kidney disease in IgA vasculitis.
IgA vasculitis (IgAV), previously known as Henoch-Schönlein purpura, is the most common vasculitis of childhood but may also occur in adults. This small vessel vasculitis is characterised by palpable purpura, abdominal pain, arthritis or arthralgia and kidney involvement. This is an update of a review first published in 2009 and updated in 2015. ⋯ There are no substantial changes in conclusions from this update compared with the initial review or the previous update despite the addition of five studies. From generally low to moderate certainty evidence, we found that there may be little or no benefit in the use of corticosteroids or antiplatelet agents to prevent persistent kidney disease in children with IgAV in participants with no or minimal kidney involvement at presentation. We did not find any studies which evaluated corticosteroids in children presenting with IgAV and nephritic and/or nephrotic syndrome, although corticosteroids are recommended in such children in guidelines. Though heparin may be effective in reducing proteinuria, this potentially dangerous therapy is not justified to prevent serious kidney disease when few children with IgAV develop severe kidney disease. There may be no benefit of cyclophosphamide compared with no specific treatment or corticosteroids. While there may be no benefit in the efficacy of MMF or tacrolimus compared with IV cyclophosphamide in children or adults with IgAV and severe kidney disease, adverse effects, particularly infections, may be lower in MMF or tacrolimus-treated children. Because of small patient numbers and events leading to imprecision in results, it remains unclear whether cyclosporin, MMF or leflunomide have any role in the treatment of children with IgAV and severe kidney disease. We did not identify any studies which evaluated corticosteroids.
-
Cochrane Db Syst Rev · Feb 2023
Review Meta AnalysisIntratympanic corticosteroids for Ménière's disease.
Ménière's disease is a condition that causes recurrent episodes of vertigo, associated with hearing loss and tinnitus. Corticosteroids are sometimes administered directly into the middle ear to treat this condition (through the tympanic membrane). The underlying cause of Ménière's disease is unknown, as is the way in which this treatment may work. The efficacy of this intervention in preventing vertigo attacks, and their associated symptoms, is currently unclear. ⋯ The evidence for intratympanic corticosteroids in the treatment of Ménière's disease is uncertain. There are relatively few published RCTs, which all consider the same type of corticosteroid (dexamethasone). We also have concerns about publication bias in this area, with the identification of two large RCTs that remain unpublished. The evidence comparing intratympanic corticosteroids to placebo or no treatment is therefore all low- or very low-certainty. This means that we have very low confidence that the effects reported are accurate estimates of the true effect of these interventions. Consensus on the appropriate outcomes to measure in studies of Ménière's disease is needed (i.e. a core outcome set) in order to guide future studies in this area, and enable meta-analysis of the results. This must include appropriate consideration of the potential harms of treatment, as well as the benefits. Finally, we would also highlight the responsibility that trialists have to ensure results are available, regardless of the outcome of their study.
-
Cochrane Db Syst Rev · Feb 2023
Review Meta AnalysisIntratympanic gentamicin for Ménière's disease.
Ménière's disease is a condition that causes recurrent episodes of vertigo, associated with hearing loss and tinnitus. Aminoglycosides are sometimes administered directly into the middle ear to treat this condition. The aim of this treatment is to partially or completely destroy the balance function of the affected ear. The efficacy of this intervention in preventing vertigo attacks, and their associated symptoms, is currently unclear. ⋯ We included randomised controlled trials (RCTs) and quasi-RCTs in adults with a diagnosis of Ménière's disease comparing intratympanic aminoglycosides with either placebo or no treatment. We excluded studies with follow-up of less than three months, or with a cross-over design (unless data from the first phase of the study could be identified). DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were: 1) improvement in vertigo (assessed as a dichotomous outcome - improved or not improved), 2) change in vertigo (assessed as a continuous outcome, with a score on a numerical scale) and 3) serious adverse events. Our secondary outcomes were: 4) disease-specific health-related quality of life, 5) change in hearing, 6) change in tinnitus and 7) other adverse effects. We considered outcomes reported at three time points: 3 to < 6 months, 6 to ≤ 12 months and > 12 months. We used GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS: We included five RCTs with a total of 137 participants. All studies compared the use of gentamicin to either placebo or no treatment. Due to the very small numbers of participants in these trials, and concerns over the conduct and reporting of some studies, we considered all the evidence in this review to be very low-certainty. Improvement in vertigo This outcome was assessed by only two studies, and they used different time periods for reporting. Improvement in vertigo was reported by more participants who received gentamicin at both 6 to ≤ 12 months (16/16 participants who received gentamicin, compared to 0/16 participants with no intervention; risk ratio (RR) 33.00, 95% confidence interval (CI) 2.15 to 507; 1 study; 32 participants; very low-certainty evidence) and at > 12 months follow-up (12/12 participants receiving gentamicin, compared to 6/10 participants receiving placebo; RR 1.63, 95% CI 0.98 to 2.69; 1 study; 22 participants; very low-certainty evidence). However, we were unable to conduct any meta-analysis for this outcome, the certainty of the evidence was very low and we cannot draw any meaningful conclusions from the results. Change in vertigo Again, two studies assessed this outcome, but used different methods of measuring vertigo and assessed the outcome at different time points. We were therefore unable to carry out any meta-analysis or draw any meaningful conclusions from the results. Global scores of vertigo were lower for those who received gentamicin at both 6 to ≤ 12 months (mean difference (MD) -1 point, 95% CI -1.68 to -0.32; 1 study; 26 participants; very low-certainty evidence; four-point scale; minimally clinically important difference presumed to be one point) and at > 12 months (MD -1.8 points, 95% CI -2.49 to -1.11; 1 study; 26 participants; very low-certainty evidence). Vertigo frequency was also lower at > 12 months for those who received gentamicin (0 attacks per year in participants receiving gentamicin compared to 11 attacks per year for those receiving placebo; 1 study; 22 participants; very low-certainty evidence). Serious adverse events None of the included studies provided information on the total number of participants who experienced a serious adverse event. It is unclear whether this is because no adverse events occurred, or because they were not assessed or reported. AUTHORS' CONCLUSIONS: The evidence for the use of intratympanic gentamicin in the treatment of Ménière's disease is very uncertain. This is primarily due to the fact that there are few published RCTs in this area, and all the studies we identified enrolled a very small number of participants. As the studies assessed different outcomes, using different methods, and reported at different time points, we were not able to pool the results to obtain more reliable estimates of the efficacy of this treatment. More people may report an improvement in vertigo following gentamicin treatment, and scores of vertigo symptoms may also improve. However, the limitations of the evidence mean that we cannot be sure of these effects. Although there is the potential for intratympanic gentamicin to cause harm (for example, hearing loss) we did not find any information about the risks of treatment in this review. Consensus on the appropriate outcomes to measure in studies of Ménière's disease is needed (i.e. a core outcome set) in order to guide future studies in this area and enable meta-analysis of the results. This must include appropriate consideration of the potential harms of treatment, as well as the benefits.
-
Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve causing pain and numbness and tingling typically in the thumb, index and middle finger. It sometimes results in muscle wasting, diminished sensitivity and loss of dexterity. Splinting the wrist (with or without the hand) using an orthosis is usually offered to people with mild-to-moderate findings, but its effectiveness remains unclear. ⋯ There is insufficient evidence to conclude whether splinting benefits people with CTS. Limited evidence does not exclude small improvements in CTS symptoms and hand function, but they may not be clinically important, and the clinical relevance of small differences with splinting is unclear. Low-certainty evidence suggests that people may have a greater chance of experiencing overall improvement with night-time splints than no treatment. As splinting is a relatively inexpensive intervention with no plausible long-term harms, small effects could justify its use, particularly when patients are not interested in having surgery or injections. It is unclear if a splint is optimally worn full time or at night-time only and whether long-term use is better than short-term use, but low-certainty evidence suggests that the benefits may manifest in the long term.
-
Cochrane Db Syst Rev · Feb 2023
ReviewPharmacological treatment for central sleep apnoea in adults.
The term central sleep apnoea (CSA) encompasses diverse clinical situations where a dysfunctional drive to breathe leads to recurrent respiratory events, namely apnoea (complete absence of ventilation) and hypopnoea sleep (insufficient ventilation) during sleep. Studies have demonstrated that CSA responds to some extent to pharmacological agents with distinct mechanisms, such as sleep stabilisation and respiratory stimulation. Some therapies for CSA are associated with improved quality of life, although the evidence on this association is uncertain. Moreover, treatment of CSA with non-invasive positive pressure ventilation is not always effective or safe and may result in a residual apnoea-hypopnoea index. ⋯ There is insufficient evidence to support the use of pharmacological therapy in the treatment of CSA. Although small studies have reported positive effects of certain agents for CSA associated with heart failure in reducing the number of respiratory events during sleep, we were unable to assess whether this reduction may impact the quality of life of people with CSA, owing to scarce reporting of important clinical outcomes such as sleep quality or subjective impression of daytime sleepiness. Furthermore, the trials mostly had short-term follow-up. There is a need for high-quality trials that evaluate longer-term effects of pharmacological interventions.