Cochrane Db Syst Rev
-
Dry eye disease (DED), arising from various etiologic factors, leads to tear film instability, ocular surface damage, and neurosensory changes. DED causes symptoms such as ocular dryness, burning, itching, pain, and visual impairment. Given their well-established anti-inflammatory effects, topical steroid preparations have been widely used as a short-term treatment option for DED. Because of potential risks of ocular hypertension, cataracts, and infections associated with the long-term use of topical steroids, published trials comparing the efficacy and safety of topical steroids (versus placebo) have mostly been of short duration (three to eight weeks). ⋯ We identified 22 RCTs conducted in the USA, Italy, Spain, China, South Korea, and India. These RCTs reported outcome data from a total of 4169 participants with DED. Study characteristics and risk of bias All trials recruited adults aged 18 years or older, except one trial that enrolled children and adolescents aged between 3 and 14 years. Half of these trials involved predominantly female participants (median 79%, interquartile range [IQR] 76% to 80%). On average, each trial enrolled 86 participants (IQR 40 to 158). The treatment duration of topical steroids ranged between one week and three months; trial duration lasted between one week and six months. Eight trials were sponsored exclusively by industry, and four trials were co-sponsored by industry and institutional or governmental funds. We assessed the risk of bias of both subjective and objective outcomes using RoB 2, finding nearly half of the trials to be at high risk of bias associated with selective outcome reporting. Findings Of the 22 trials, 16 evaluated effects of topical steroids, alone or in combination with tobramycin, as compared with lubricants (AT, vehicle), AT plus tobramycin, or no treatment. Corticosteroids probably have a small to moderate effect on improving patient-reported symptoms by 0.29 standardized mean difference (SMD) (95% confidence interval [CI] 0.16 to 0.42) as compared with lubricants (moderate certainty evidence). Topical steroids also likely have a small to moderate effect on lowering corneal staining scores by 0.4 SMDs (95% CI 0.18 to 0.62) (moderate certainty evidence). However, steroids may increase tear film break-up time (TBUT) slightly (mean difference [MD] 0.70 s, 95% CI 0.06 to 1.34; low certainty evidence) but not tear osmolarity (MD 1.60 mOsm/kg, 95% CI -10.47 to 13.67; very low certainty evidence). Six trials examined topical steroids, either alone or in combination with CsA, against CsA alone. Low certainty evidence indicates that steroid-based interventions may have a small to moderate effect on improving participants' symptoms (SMD -0.33, 95% CI -0.51 to -0.15), but little to no effect on corneal staining scores (SMD 0.05, 95% CI -0.25 to 0.35) as compared with CsA. The effect of topical steroids compared to CsA alone on TBUT (MD 0.37 s, 95% CI -0.13 to 0.87) or tear osmolarity (MD 5.80 mOsm/kg, 95% CI -0.94 to 12.54; loteprednol etabonate alone) is uncertain because the certainty of the evidence is low or very low. None of the included trials reported on quality of life scores. Adverse effects The evidence for adverse ocular effects of topical corticosteroids is very uncertain. Topical corticosteroids may increase participants' risk of intraocular pressure (IOP) elevation (risk ratio [RR] 5.96, 95% CI 1.30 to 27.38) as compared with lubricants. However, when compared with CsA, steroids alone or combined with CsA may decrease or increase IOP elevation (RR 1.45, 95% CI 0.25 to 8.33). It is also uncertain whether topical steroids may increase risk of cataract formation when compared with lubricants (RR 0.34, 95% CI 0.01 to 8.22), given the short-term use and study duration (four weeks or less) to observe longer-term adverse effects. AUTHORS' CONCLUSIONS: Overall, the evidence for the specified review outcomes was of moderate to very low certainty, mostly due to high risk of bias associated with selective results reporting. For dry eye patients whose symptoms require anti-inflammatory control, topical corticosteroids probably provide small to moderate degrees of symptom relief beyond lubricants, and may provide small to moderate degrees of symptom relief beyond CsA. However, the current evidence is less certain about the effects of steroids on improved tear film quality or quantity. The available evidence is also very uncertain regarding the adverse effects of topical corticosteroids on IOP elevation or cataract formation or progression. Future trials should generate high certainty evidence to inform physicians and patients of the optimal treatment strategies with topical corticosteroids in terms of regimen (types, formulations, dosages), duration, and its time-dependent adverse profile.
-
Cochrane Db Syst Rev · Oct 2022
ReviewSystemic corticosteroids for radicular and non-radicular low back pain.
Corticosteroids are medications with anti-inflammatory and immunosuppressant properties. Systemic corticosteroids administered through the oral, intravenous, or intramuscular routes have been used to treat various types of low back pain, including radicular back pain (not due to spinal stenosis), non-radicular back pain, and spinal stenosis. However, there is uncertainty about the benefits and harms of systemic corticosteroids for low back pain. ⋯ Systemic corticosteroids appear to be slightly effective at improving short-term pain and function in people with radicular low back pain not due to spinal stenosis, and might slightly improve long-term function. The effects of systemic corticosteroids in people with non-radicular low back pain are unclear and systemic corticosteroids are probably ineffective for spinal stenosis. A single dose or short course of systemic corticosteroids for low back pain does not appear to cause serious harms, but evidence is limited.
-
Cochrane Db Syst Rev · Oct 2022
ReviewBiomarkers as point-of-care tests to guide prescription of antibiotics in people with acute respiratory infections in primary care.
Acute respiratory infections (ARIs) are by far the most common reason for prescribing an antibiotic in primary care, even though the majority of ARIs are of viral or non-severe bacterial aetiology. It follows that in many cases antibiotic use will not be beneficial to a patient's recovery but may expose them to potential side effects. Furthermore, limiting unnecessary antibiotic use is a key factor in controlling antibiotic resistance. One strategy to reduce antibiotic use in primary care is point-of-care biomarkers. A point-of-care biomarker (test) of inflammation identifies part of the acute phase response to tissue injury regardless of the aetiology (infection, trauma, or inflammation) and may be used as a surrogate marker of infection, potentially assisting the physician in the clinical decision whether to use an antibiotic to treat ARIs. Biomarkers may guide antibiotic prescription by ruling out a serious bacterial infection and help identify patients in whom no benefit from antibiotic treatment can be anticipated. This is an update of a Cochrane Review first published in 2014. ⋯ The use of C-reactive protein point-of-care tests as an adjunct to standard care likely reduces the number of participants given an antibiotic prescription in primary care patients who present with symptoms of acute respiratory infection. The use of C-reactive protein point-of-care tests likely does not affect recovery rates. It is unlikely that further research will substantially change our conclusion regarding the reduction in number of participants given an antibiotic prescription, although the size of the estimated effect may change. The use of C-reactive protein point-of-care tests may not increase mortality within 28 days follow-up, but there were very few events. Studies that recorded deaths and hospital admissions were performed in children from low- and middle-income countries and older adults with comorbidities. Future studies should focus on children, immunocompromised individuals, and people aged 80 years and above with comorbidities. More studies evaluating procalcitonin and potential new biomarkers as point-of-care tests used in primary care to guide antibiotic prescription are needed. Furthermore, studies are needed to validate C-reactive protein decision algorithms, with a specific focus on potential age group differences.
-
Motion sickness is a syndrome that occurs as a result of passive body movement in response to actual motion, or the illusion of motion when exposed to virtual and moving visual environments. The most common symptoms are nausea and vomiting. Antihistamines have been used in the management of motion sickness for decades, however studies have shown conflicting results regarding their efficacy. ⋯ There is probably a reduction in the risk of developing motion sickness symptoms under naturally occurring conditions of motion when using first-generation antihistamines, in motion sickness-susceptible adults, compared to placebo. Antihistamines may be more likely to cause sedation when compared to placebo. No studies evaluated the treatment of existing motion sickness, and there are few data on the effect of antihistamines in children. The evidence for all other outcomes and comparisons (versus scopolamine, antiemetics and acupuncture) was of low or very low certainty and we are therefore uncertain about these effects of antihistamines.
-
Cochrane Db Syst Rev · Oct 2022
ReviewAdjunctive therapies in addition to land-based exercise therapy for osteoarthritis of the hip or knee.
Land-based exercise therapy is recommended in clinical guidelines for hip or knee osteoarthritis. Adjunctive non-pharmacological therapies are commonly used alongside exercise in hip or knee osteoarthritis management, but cumulative evidence for adjuncts to land-based exercise therapy is lacking. ⋯ Moderate- to low-certainty evidence showed no difference in pain, physical function or QOL between adjunctive therapies and placebo adjunctive therapies, or in pain, physical function, QOL or joint structural changes, compared to exercise only. Participant-reported global assessment was not reported for placebo comparisons, but there is probably a slight clinical benefit for adjunctive therapies plus exercise compared with exercise, based on a small number of studies. This may be explained by additional constructs captured in global measures compared with specific measures. Although results indicate no increased adverse events for adjunctive therapies used with exercise, these were poorly reported. Most studies evaluated short-term effects, with limited medium- or long-term evaluation. Due to a preponderance of knee osteoarthritis trials, we urge caution in extrapolating the findings to populations with hip osteoarthritis.