Int J Med Sci
-
Gastric cancer is a highly malignant tumor. Gastric cancer stem cells (GCSCs) are the main causes of drug resistance, metastasis, recurrence, and poor prognosis. As a secondary metabolite of lichen, Atranorin has a variety of biological effects, such as antibacterial, anti-inflammatory, analgesic, and wound healing; however, its killing effect on GCSCs has not been reported. ⋯ The results of high performance liquid chromatography-mass spectrometry and Dot blotting showed that Atranorin@SPION significantly inhibited the mRNA 5‑hydroxymethylcytidine modification of GCSCs. Meanwhile, the results of RNA immunoprecipitation-PCR also indicated that Atranorin@SPIONs significantly reduced the 5-hydroxymethylcytidine modification level of GPX4 and SLC7A11 mRNA 3' untranslated region in GCSCs, resulting in a decrease in their stability, shortening their half-lives and reducing translation activity. Therefore, this study revealed that Atranorin@SPIONs induced ferroptosis of GCSCs by weakening the expression of the Xc-/GPX4 axis and the 5-hydroxymethylcytidine modification of mRNAs in the pathway, thereby achieving their therapeutic effect on gastric cancer.
-
Oral squamous cell carcinoma (OSCC) is particularly prevalent in Taiwan. The goal of this study was to determine the clinicopathological role of insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) proteins as an indicator of clinical outcomes in OSCC patients. In this study, immunohistochemical (IHC) analysis was used to examine IGF2BP2 protein expression in 244 OSCC patients. ⋯ Kaplan-Meier survival curves revealed that elevated cytoplasmic IGF2BP2 expression levels in OSCC patients were associated with poor overall survival. Moreover, multivariate cox proportional hazard models revealed that cytoplasmic IGF2BP2 expression, T status, and lymph node metastasis were independent prognostic factors for survival. In conclusion, IGF2BP2 protein was found to be a helpful predictive marker for OSCC patients, as well as a possible therapeutic target for OSCC treatment.
-
Background: Diaphragm movement is well correlated with inspired volume of the lung. Dexmedetomidine (DEX) has less effect on respiratory functions than other sedatives. The objective of this study was to investigate diaphragmatic movement using ultrasound (US) during DEX infusion for sedation in spontaneously breathing patients undergoing unilateral upper limb surgery. ⋯ Desaturation episodes were not observed during the study period. Conclusions: Results of this study showed that DEX sedation did not affect the diaphragmatic movement in situation of decreased RR induced by DEX. This finding implies that DEX-induced sedation does not result in clinically significant respiratory depression.
-
Objectives: The HAT2CH2 score has been evaluated for predicting new-onset atrial fibrillation in several clinical conditions, but never for adverse neurologic events. We aimed to evaluate the effectiveness of HAT2CH2 score in predicting neurologic events in patients with cardiac implantable electronic device (CIED), comparing with atrial high-rate episodes (AHRE). Methods: This case-control study enrolled 314 consecutive patients aged 18 years or older with CIED implantation between January 2015 and April 2021. ⋯ Both AHRE ≥ 1 minute and HAT2CH2 score ≥ 3 had the highest AUC of the receiver-operating characteristic (0.898, 95% CI, 0.831-0.965, p < 0.001). Significant increase was observed in NE occurrence rates using the HAT2CH2 score (p < 0.001). Conclusion: The HAT2CH2 score and episodes of AHRE lasting ≥ 1 minute are independent risk factors for NE in patients with CIED.
-
Purpose: When dexmedetomidine is used in elderly patients, high incidence of bradycardia is reported. Given age-related physiological changes in this population, it is necessary to know the safety margin between the loading dose of dexmedetomidine and bradycardia. Therefore, we conducted this study to investigate the median effective dose (ED50) of dexmedetomidine causing bradycardia in elderly patients. ⋯ Conclusion: The ED50 of dexmedetomidine causing bradycardia in our cohort was higher than clinical recommended dose. A higher loading dose appears acceptable for a faster onset of sedation under careful hemodynamic monitoring. Trial registration: ChiCTR 15006368.