Int J Med Sci
-
Aspirin has been used as anti-inflammatory and anti-aggregate for decades but the precise mechanism(s) of action after the presence of the toxic peptide Aβ1-42 in cultured astrocytes remains poorly resolved. Here we use low-doses of aspirin (10-7 M) in astrocytes in primary culture in presence or absence of Aβ1-42 toxic peptide. We noted an increase of cell viability and proliferation with or without Aβ1-42 peptide presence in aspirin treated cells. ⋯ Aspirin inhibited COX-2 and iNOS without changes in COX-1 expression, increasing anti-oxidant protein (Cu/Zn-SOD and Mn-SOD) expression in presence or absence of Aβ1-42. Taken together, our results show that aspirin, at low doses increases cell viability by decreasing inflammation and oxidative stress, preventing the deleterious effects of the Aβ1-42 peptide on astrocytes in primary culture. The use of low doses of aspirin may be more suitable for Alzheimer's disease.
-
Purpose: Dynamic [11C]-acetate positron emission tomography (PET) can be used to study tissue perfusion and carbon flux simultaneously. In this study, the feasibility of the quantification of prostate cancer aggressiveness using parametric methods assessing [11C]-acetate kinetics was investigated in prostate cancer subjects. The underlying uptake mechanism correlated with [11C]-acetate influx and efflux measured in real-time in vitro in cell culture. ⋯ Conclusion: Parametric images could be used to visualize the [11C]-acetate kinetics of the prostate cancer exhibiting elevated extraction associated with the cancer aggressiveness. The influx rate of [11C]-acetate studied in cell culture also showed dependence on the cancer aggressiveness associated with elevated lipogenesis. Dynamic [11C]-acetate/PET demonstrated potential for prostate cancer aggressiveness estimation using parametric-based K1 and VT values.
-
Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. ⋯ However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
-
Background: Illustrating the pathogenesis of hepatocellular carcinoma (HCC) pathogenesis as well as identifying specific biomarkers are of great significance. Methods: The original CEL files were obtain from Gene Expression Omnibus, then affymetrix package was used to preprocess the CEL files, the function of DEGs were investigated by multiple bioinformatics approach. Finally, typical HCC cell lines and tissue samples were using to validate the role of CDC6 in vitro. ⋯ Furthermore, we recognized that miR-215-5p, could directly bind to the 3'UTR of CDC6. In addition, CDC6 promoted proliferation via regulation of G1 phase checkpoint and was negative regulated by miR-215-5p to involve in the proliferation of HCC. Conclusion: Our study suggested that CDC6 served as a potential therapeutic target for HCC.
-
Xerostomia (dry mouth) is a significant age-related condition. Meanwhile, cordycepin, the natural therapeutic agent, has demonstrated an anti-aging effect. Therefore, the present study aimed to investigate the preventive effects of cordycepin on secretory function in an in vitro model of hydrogen peroxide (H2O2)-induced salivary hypofunction. ⋯ Cordycepin rescued the protective effects partially by decreasing ROS generation and restoring the expression of the salivary proteins, AMY and AQP5 via anti-oxidant and anti-apoptotic activity. In addition, the amount of amylase that was secreted from HSG cells cultured in cordycepin was increased. In conclusion, cordycepin demonstrated a protective effect on H2O2-induced HSG cells by decreasing ROS generation and upregulating the salivary function markers, AMY1A and AQP5, at both the transcriptional and translational levels.