J Res Med Sci
-
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a zoonotic infection, is responsible for COVID-19 pandemic and also is known as a public health concern. However, so far, the origin of the causative virus and its intermediate hosts is yet to be fully determined. SARS-CoV-2 contains nearly 30,000 letters of RNA that allows the virus to infect cells and hijack them to make new viruses. ⋯ To date, in contrary to the global effort to come up with various aspects of SARS-CoV-2, there are still great pitfalls in the knowledge of this disease and many angles remain unclear. That's why, the monitoring and periodical investigation of this emerging infection in an epidemiological study seems to be essential. The present study characterizes the current epidemiological status (i.e., possible transmission route, mortality and morbidity risk, emerging SARS-CoV-2 variants, and clinical feature) of the SARS-CoV-2 in the world during these pandemic.
-
Coagulopathy and derangements in the coagulation parameters are significant features of COVID-19 infection, which increases the risk of disseminated intravascular coagulation, thrombosis, and hemorrhage in these patients, resulting in increased morbidity and mortality. In times of COVID-19, special consideration should be given to patients with concurrent chronic kidney disease (CKD) and COVID-19 (CKD/COVID-19 patients) as renal dysfunction increases their risk of thrombosis and hemorrhage, and falsely affects some of the coagulation factors, which are currently utilized to assess thrombosis risk in patients with COVID-19. ⋯ Furthermore, effects of renal function on paraclinical and clinical data should be considered during the evaluation and interpretation of thrombosis risk stratification. Individualized evaluation of clinical status and kidney function is necessary to determine the best approach and management for anticoagulant therapy, whereas there is a lack of studies about the population of CKD/COVID-19 patients who need anticoagulant therapy now.
-
The confirmed and suspected cases of the 2019 novel coronavirus disease (COVID-19) have increased in the entire world. There is still no vaccine or definitive treatment for this virus due to its unknown pathogenesis and proliferation pathways. Optimized supportive care remains the main therapy, and the clinical efficacy for the subsequent agents is still under investigation. ⋯ In this article, we have summarized the current guidance on potential COVID-19 management options. The recent experience with COVID-19 provided lessons on strategy and policymaking that the government and ministry of health should be on the alert and concentrate more on capacity to manage an outbreak like COVID-19. It is important to consider the new data that emerge daily regarding clinical characteristics, treatment options, and outcomes for COVID-19.
-
COVID-19 has caused significant morbidity and mortality around the world. Recent reports point toward the "cytokine storm" as core of pathogenesis in SAR-CoV-2-induced acute lung injury, acute respiratory distress syndrome (ARDS), coagulopathy, and multiorgan failure. We have presented clinical data here wherein cytokine levels in COVID-19 patients do not match typical cytokine storm seen in ARDS. ⋯ We hypothesized that core to pathogenesis of COVID-19 is the dysregulation of neutrophils, which culminates in excessive release of neutrophil extracellular traps (NETs). Recently, an increasing amount of NETs have been seen in sera of severe COVID-19 patients. We have discussed here mechanisms involved which lead to thrombogenesis and vasculitis because of excessive release of NETs.
-
Review
Determining the factors affecting energy metabolism and energy requirement in cancer patients.
Cancer is the second most common cause of death worldwide. It is a generic name for a large group of diseases that can affect any part of the body. ⋯ Due to the difficulty in directly measuring the TEE, resting energy expenditure, which is the largest component of the TEE, is often used in the determination of the energy requirement. In this study, the effects of disease-specific factors such as tumor burden, inflammation, weight loss and cachexia on energy metabolism in cancer patients were investigated.