Blood Transfus Italy
-
Blood Transfus Italy · Apr 2014
Patient blood management in orthopaedic surgery: a four-year follow-up of transfusion requirements and blood loss from 2008 to 2011 at the Balgrist University Hospital in Zurich, Switzerland.
The aim of this study was to investigate the impact of the introduction of a Patient Blood Management (PBM) programme in elective orthopaedic surgery on immediate pre-operative anaemia, red blood cell (RBC) mass loss, and transfusion. ⋯ Detection and treatment of pre-operative anaemia, meticulous surgical technique, optimal surgical blood-saving techniques, and standardised transfusion triggers in the context of PBM programme resulted in a lower incidence of immediate pre-operative anaemia, reduction in RBC mass loss, and a lower transfusion rate.
-
Blood Transfus Italy · Apr 2014
Clinical TrialA calcium-containing electrolyte-balanced hydroxyethyl starch (HES) solution is associated with higher factor VIII activity than is a non-balanced HES solution, but does not affect von Willebrand factor function or thromboelastometric measurements--results of a model of in vitro haemodilution.
Hydroxyethyl starch (HES) is known to impair blood coagulation. The impact of calcium-containing, balanced carrier solutions of HES on coagulation is controversial. We investigated the effects of increasing degrees of haemodilution with modern 6%, electrolyte-balanced HES vs non-balanced HES on coagulation in vitro, and compared the balanced HES to a balanced crystalloid solution for an internal control. ⋯ In vitro, a balanced calcium-containing carrier solution of 6% HES 130/0.42 preserved coagulation better than did non-balanced HES 130/0.4 as quantified by conventional coagulation assays, but not in activated thromboelastometry. One explanation could be the increased ionized calcium levels after dilution with calcium-containing carrier solutions.
-
Blood Transfus Italy · Apr 2014
The influence of storage age on iron status, oxidative stress and antioxidant protection in paediatric packed cell units.
Receipt of blood transfusions is associated with the major consequences of prematurity such as bronchopulmonary dysplasia. Transfusion-mediated (iron-induced) oxidative damage, coupled with the limited ability of the premature baby to deal with enhanced iron and oxidative load may contribute to this. Adverse effects of transfusion may be related to duration of storage. This study examined the influence of storage on iron and oxidative status in paediatric packed red blood cell units. ⋯ These data suggest that iron released following the initial preparation of packed red blood cell units may derive from free radical-mediated oxidative damage to the red blood cells and haemoglobin, rather than from extracellular haemoglobin. Iron continues to be released during storage as antioxidant protection declines. A cycle of free radical-mediated damage may initiate and then further exacerbate iron release during storage which, in turn, may mediate further free radical-mediated cellular damage. The potential consequences to recipients of older stored blood may be significant.