BMC anesthesiology
-
Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK) model for propofol. ⋯ A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a PBPK model is that it can be used to predict the changes in kinetics produced by variations in physiological parameters. As one example, the model simulation of the changes in pharmacokinetics for morbidly obese subjects is discussed.
-
The possibility exists for major complications to occur when individuals are intoxicated with alcohol prior to anesthetization. Halothane is an anesthetic that can be metabolized by the liver into a highly reactive product, trifluoroacetyl chloride, which reacts with endogenous proteins to form a trifluoroacetyl-adduct (TFA-adduct). The MAA-adduct which is formed by acetaldehyde (AA) and malondialdehyde reacting with endogenous proteins, has been found in both patients and animals chronically consuming alcohol. These TFA and MAA-adducts have been shown to cause the release of inflammatory products by various cell types. If both adducts share a similar mechanism of cell activation, receiving halothane anesthesia while intoxicated with alcohol could exacerbate the inflammatory response and lead to cardiovascular injury. ⋯ These results demonstrate that halothane and MAA-adduct pre-treatment increases the inflammatory response (TNF-alpha release). Also, these results suggest that halothane exposure may increase the risk of alcohol-induced heart injury, since halothane pre-treatment potentiates the HEC TNF-alpha release measured following both MAA-Alb and LPS stimulation.
-
Despite preclinical evidence suggesting a synergistic interaction between ketamine and opioids promoting analgesia, several clinical trials have not identified dosing regimens capable of eliciting a benefit in the co-administration of ketamine with opioids. ⋯ A serum concentration of ketamine that did not alter indices of sedation potentiated the antinociceptive effect of fentanyl. This potentiation of antinociception occurred without an increase in sedation suggesting that low steady doses of ketamine (30-120 ng/ml) might be combined with mu opioid agonists to improve their analgesic effect in a clinical setting. (296 words).