BMC anesthesiology
-
Agitation is common in subarachnoid hemorrhage (SAH), and sedation with midazolam, propofol and dexmedetomidine is essential in agitation management. Previous research shows the tendency of dexmedetomidine and propofol in improving long-term outcome of SAH patients, whereas midazolam might be detrimental. Brain metabolism derangement after SAH might be interfered by sedatives. However, how sedatives work and whether the drugs interfere with patient outcome by altering cerebral metabolism is unclear, and the comprehensive view of how sedatives regulate brain metabolism remains to be elucidated. ⋯ Pentose phosphate pathway was a crucial target for sedatives which alter brain metabolism. Midazolam and propofol enhanced the pentose phosphate pathway and nucleotide synthesis in poor-grade SAH patients, as presented in the CSF. The situation of dexmedetomidine was the opposite. The divergent modulation of cerebral metabolism might further explain sedative pharmacology and how sedatives affect the outcome of SAH patients.
-
Previous studies reported a slow neuromuscular response with the currently recommended dose of cisatracurium in critically ill patients. Pharmacokinetic and pharmacodynamic studies of cisatracurium in critically ill patients are still limited. To our knowledge, this is the first study performed to better understand the pharmacokinetics (PKs) and pharmacodynamics (PDs) of a loading dose of cisatracurium and to identify factors that affect PK and PD changes in critically ill patients. ⋯ The currently recommended loading dose of cisatracurium might not lead to the desired pharmacodynamic response in critically ill patients with respiratory failure.
-
Meta Analysis
Unfractionated heparin improves the clinical efficacy in adult sepsis patients: a systematic review and meta-analysis.
The anticoagulant treatment and clinical efficacy of heparin in sepsis remains controversial. We conducted a meta-analysis to estimate the clinical efficacy of unfractionated heparin (UFH) in adult septic patients. ⋯ This meta-analysis suggests that UFH may reduce 28 d mortality and improve the clinical efficacy in sepsis patients without bleeding adverse effect.
-
Randomized Controlled Trial
Optimizing left ventricular-arterial coupling during the initial resuscitation in septic shock - a pilot prospective randomized study.
Left ventricular-arterial coupling (VAC), defined as the ratio of effective arterial elastance (Ea) to left ventricular end-systolic elastance (Ees), has been extensively described as a key determinant of cardiovascular work efficacy. Previous studies indicated that left ventricular-arterial uncoupling was associated with worse tissue perfusion and increased mortality in shock patients. Therefore, this study aims to investigate whether a resuscitation algorithm based on optimizing left VAC during the initial resuscitation can improve prognosis in patients with septic shock. ⋯ During the initial resuscitation of septic shock, optimizing left ventricular-arterial coupling was associated with improved lactate clearance, while likely having a beneficial effect on prognosis.