Translational stroke research
-
Review
Smooth muscle phenotype switching in blast traumatic brain injury-induced cerebral vasospasm.
Due to increased survival rates among soldiers exposed to explosive blasts, blast-induced traumatic brain injury (bTBI) has become much more prevalent in recent years. Cerebral vasospasm (CVS) is a common manifestation of brain injury whose incidence is significantly increased in bTBI. CVS is characterized by initial vascular smooth muscle cell (VSMC) hypercontractility, followed by prolonged vessel remodeling and lumen occlusion, and is traditionally associated with subarachnoid hemorrhage (SAH), but recent results suggest that mechanical injury during bTBI can cause mechanotransduced VSMC hypercontractility and phenotype switching necessary for CVS development, even in the absence of SAH. Here, we review the mechanisms by which mechanical stimulation and SAH can synergistically drive CVS progression, complicating treatment options in bTBI patients.
-
While several MRI parameters are used to assess tissue perfusion during hyperacute stroke, it is unclear which is optimal for measuring clinically relevant reperfusion. We directly compared mean transit time (MTT) prolongation (MTTp), time-to-peak (TTP), and time-to-maximum (Tmax) to determine which best predicted neurological improvement and tissue salvage following early reperfusion. Acute ischemic stroke patients underwent three MRIs: <4.5 h (tp1), at 6 h (tp2), and at 1 month after onset. ⋯ Tissue salvage significantly correlated with reperfusion for all MTTp thresholds and with Tmax >6 s, while there was no correlation with any TTP threshold. Among all parameters, reperfusion defined by MTTp was most strongly associated with ∆NIHSS (MTTp >3 s, P = 0.0002) and tissue salvage (MTTp >3 s and 4 s, P < 0.0001). MTT-defined reperfusion was the best predictor of neurological improvement and tissue salvage in hyperacute ischemic stroke.