Sensors (Basel, Switzerland)
-
A low-power wireless acoustic sensing platform for remote surveillance applications based on a 180 nm CMOS technology is proposed in this paper. The audio signal, which is acquired by a microphone, is first amplified and filtered. Then, the analog signal is converted to a digital signal by a 10-bit analog-to-digital converter (ADC). ⋯ The measured maximum output power is 5.7 dBm and the transmission distance is over 500 m for real application scenarios. The chip consumes 25.1 mW power in normal work mode and 0.058 mW in standby mode. Compared to existing wireless acoustic sensors, the proposed wireless acoustic sensing platform can achieve features such as compactness, power efficiency, and reliability.
-
Traffic congestion, especially during peak hours, has become a challenge for transportation systems in many metropolitan areas, and such congestion causes delays and negative effects for passengers. Many studies have examined the prediction of congestion; however, these studies focus mainly on road traffic, and subway transit, which is the main form of transportation in densely populated cities, such as Tokyo, Paris, and Beijing and Shenzhen in China, has seldom been examined. This study takes Shenzhen as a case study for predicting congestion in a subway system during peak hours and proposes a hybrid method that combines a static traffic assignment model with an agent-based dynamic traffic simulation model to estimate recurrent congestion in this subway system. ⋯ An origin-destination (OD) matrix derived from the data is used as an input in this method of predicting traffic, and the traffic congestion is presented in simulations. To evaluate the predictions, data on the congestion condition of subway segments that are released daily by the Shenzhen metro operation microblog are used as a reference, and a comparative analysis indicates the appropriateness of the proposed method. This study could be taken as an example for similar studies that model subway traffic in other cities.
-
Recent studies have reported the application of artificial neural network (ANN) techniques on data of inertial measurement units (IMUs) to predict ground reaction forces (GRFs), which could serve as quantitative indicators of sports performance or rehabilitation. The number of IMUs and their measurement locations are often determined heuristically, and the rationale underlying the selection of these parameter values is not discussed. Using the dynamic relationship between the center of mass (CoM), the GRFs and joint kinetics, we propose the CoM as a single measurement location with which to predict the dynamic data of the lower limbs, using an ANN. ⋯ Six segment angles of the stance and swing leg, three joint torques, and two GRFs were estimated from the kinematics of the CoM measured from a single IMU sensor, with fair accuracy. These results indicate the importance of the CoM as a dynamic determinant of multi-segment kinetics during walking. The tradeoff between data quantity and wearable convenience can be solved by utilizing a machine learning algorithm based on the dynamic characteristics of human walking.
-
In a constantly evolving world, new technologies such as Internet of Things (IoT) and cloud-based services offer great opportunities in many fields. In this paper we propose a new approach to the development of smart sensors using IoT and cloud computing, which open new interesting possibilities in analytical chemistry. According to IoT philosophy, these new sensors are able to integrate the generated data on the existing IoT platforms, so that information may be used whenever needed. ⋯ The experimental data obtained are compared to those yielded by three other classical ISEs, with satisfactory results being achieved in most instances. Additionally, this methodology leads to lower-consumption, low-cost bicarbonate sensors capable of being employed within an IoT application, for instance in the continuous monitoring of HCO3- in rivers. Most importantly, this innovative application field of IoT and cloud approaches can be clearly perceived as an indicator for future developments over the short-term.