Sensors (Basel, Switzerland)
-
Due to the rapid development of Internet of Things (IoT), IoT platforms that can provide common functions for things are becoming increasingly important. However, access control frameworks in diverse IoT platforms have been developed for individual security goals, designs, and technologies. In particular, current OAuth-based access control frameworks that are widely used in IoT research have not been providing interoperability among IoT platforms even though sharing resources and services is a critical issue for IoT platforms. ⋯ Furthermore, IAT supports a simple token management (e.g., token issuance, refreshing, and revocation) by managing only one token for diverse IoT platforms. In addition, we implement our interoperable access control framework on Mobius and FIWARE, which are promising open-source IoT platforms, and test an interoperability scenario to demonstrate our approach with the implementation. Furthermore, the proposed framework is compared with other IoT access control approaches based on the selected requirements in this paper.
-
In digital and green city initiatives, smart mobility is a key aspect of developing smart cities and it is important for built-up areas worldwide. Double-parking and busy roadside activities such as frequent loading and unloading of trucks, have a negative impact on traffic situations, especially in cities with high transportation density. Hence, a real-time internet of things (IoT)-based system for surveillance of roadside loading and unloading bays is needed. ⋯ Through a vision-based network, real-time roadside traffic images, such as images of loading or unloading activities, are captured automatically. By making use of the collected data, decision support on roadside occupancy and vacancy can be evaluated by means of fuzzy logic and visualized for users, thus enhancing the transparency of roadside activities. The CVROSS was designed and tested in Hong Kong to validate the accuracy of parking-gap estimation and system performance, aiming at facilitating traffic and fleet management for smart mobility.
-
The proliferation of inter-connected devices in critical industries, such as healthcare and power grid, is changing the perception of what constitutes critical infrastructure. The rising interconnectedness of new critical industries is driven by the growing demand for seamless access to information as the world becomes more mobile and connected and as the Internet of Things (IoT) grows. Critical industries are essential to the foundation of today's society, and interruption of service in any of these sectors can reverberate through other sectors and even around the globe. ⋯ Then, an in-depth analysis of the fog computing security challenges and big data privacy and trust concerns in relation to fog-enabled IoT are given. We also discuss blockchain as a key enabler to address many security related issues in IoT and consider closely the complementary interrelationships between blockchain and fog computing. In this context, this work formalizes the task of securing big data and its scope, provides a taxonomy to categories threats to fog-based IoT systems, presents a comprehensive comparison of state-of-the-art contributions in the field according to their security service and recommends promising research directions for future investigations.
-
The aim of this review was to understand the use of wearable technology in sport in order to enhance performance and prevent injury. Understanding sports biomechanics is important for injury prevention and performance enhancement and is traditionally assessed using optical motion capture. However, such approaches are limited by capture volume restricting assessment to a laboratory environment, a factor that can be overcome by wearable technology. ⋯ A total of 33 articles were included for full-text analysis where participants took part in a sport and performed dynamic movements relating to performance monitored by wearable technologies. Inertial measurement units, flex sensors and magnetic field and angular rate sensors were among the devices used in over 15 sports to quantify motion. Wearable technology usage is still in an exploratory phase, but there is potential for this technology to positively influence coaching practice and athletes' technique.