Sensors (Basel, Switzerland)
-
Objective assessment of shoulder joint active range of motion (AROM) is critical to monitor patient progress after conservative or surgical intervention. Advancements in miniature devices have led researchers to validate inertial sensors to capture human movement. This study investigated the construct validity as well as intra- and inter-rater reliability of active shoulder mobility measurements using a coupled system of inertial sensors and the Microsoft Kinect (HumanTrak). ⋯ These results indicated that the HumanTrak system is an objective, valid and reliable way to assess and track shoulder ROM.
-
Internet of Things (IoT) applications play a relevant role in today's industry in sharing diagnostic data with off-site service teams, as well as in enabling reliable predictive maintenance systems. Several interventions scenarios, however, require the physical presence of a human operator: Augmented Reality (AR), together with a broad-band connection, represents a major opportunity to integrate diagnostic data with real-time in-situ acquisitions. Diagnostic information can be shared with remote specialists that are able to monitor and guide maintenance operations from a control room as if they were in place. ⋯ In this paper, we present a complete setup for a remote assistive maintenance intervention based on 5G networking and tested at a Vodafone Base Transceiver Station (BTS) within the Vodafone 5G Program. Technicians' safety was improved by means of a lightweight AR Head-Mounted Display (HDM) equipped with a thermal camera and a depth sensor to foresee possible collisions with hot surfaces and dangerous objects, by leveraging the processing power of remote computing paired with the low latency of 5G connection. Field testing confirmed that the proposed approach can be a viable solution for egocentric environment understanding and enables an immersive integration of the obtained augmented data within the real scene.
-
Internet of Things (IoT) technology has recently been integrated with various healthcare devices to monitor patients' health status and share it with their healthcare practitioners. Since healthcare data often contain personal and sensitive information, healthcare systems must provide a secure user authentication scheme. ⋯ We propose a novel three-factor lightweight user authentication scheme that addresses these weaknesses and verifies the security of the proposed scheme using a formal verification tool called ProVerif. In addition, our proposed scheme outperforms other proposed symmetric encryption-based schemes or elliptic curve-based schemes.