Sensors (Basel, Switzerland)
-
In a few years, the world will be populated by billions of connected devices that will be placed in our homes, cities, vehicles, and industries. Devices with limited resources will interact with the surrounding environment and users. Many of these devices will be based on machine learning models to decode meaning and behavior behind sensors' data, to implement accurate predictions and make decisions. ⋯ The aim of this work is to provide a review of the main techniques that guarantee the execution of machine learning models on hardware with low performances in the Internet of Things paradigm, paving the way to the Internet of Conscious Things. In this work, a detailed review on models, architecture, and requirements on solutions that implement edge machine learning on Internet of Things devices is presented, with the main goal to define the state of the art and envisioning development requirements. Furthermore, an example of edge machine learning implementation on a microcontroller will be provided, commonly regarded as the machine learning "Hello World".
-
Cardiovascular diseases are the main cause of death worldwide, with sleep disordered breathing being a further aggravating factor. Respiratory illnesses are the third leading cause of death amongst the noncommunicable diseases. The current COVID-19 pandemic, however, also highlights the impact of communicable respiratory syndromes. ⋯ LVET and PEP estimation errors were 10% and 21%, respectively. Respiratory rates were estimated with mean absolute errors below 1.2 bpm, and the respiratory signal yielded a correlation of 0.66. We conclude that the estimation of ECG, PEP, LVET, and respiratory parameters is feasible using a wearable, multimodal acquisition device and encourage further research in multimodal signal fusion for respiratory signal estimation.