Sensors (Basel, Switzerland)
-
Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. ⋯ RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1-93.0%), 90.2% (CI: 86.2-94.3%) and 90.8% (CI: 88.1-93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.
-
Type 1 diabetes (T1D) is a chronic health condition resulting from pancreatic beta cell dysfunction and insulin depletion. While automated insulin delivery systems are now available, many people choose to manage insulin delivery manually through insulin pumps or through multiple daily injections. Frequent insulin titrations are needed to adequately manage glucose, however, provider adjustments are typically made every several months. ⋯ Of those articles, we identified 61 articles for comprehensive review based on algorithm evaluation using real-world human data, in silico trials, or clinical studies. We grouped decision support systems into general categories of (1) those which recommend adjustments to insulin and (2) those which predict and help avoid hypoglycemia. We review the artificial intelligence methods used for each type of decision support system, and discuss the performance and potential applications of these systems.
-
Substantial developments have been established in the past few years for enhancing the performance of brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). The past SSVEP-BCI studies utilized different target frequencies with flashing stimuli in many different applications. However, it is not easy to recognize user's mental state changes when performing the SSVEP-BCI task. ⋯ These results show how mental state changes affect the performance of BCI users. In this work, we developed a new scenario to recognize the user's cognitive state during performing BCI tasks. These findings can be used as the novel neural markers in future BCI developments.