Sensors (Basel, Switzerland)
-
Wildfire is a sudden and hazardous natural disaster. Currently, many schemes based on optical spectrum analysis have been proposed to detect wildfire, but obstacles in forest areas can decrease the efficiency of spectral monitoring, resulting in a wildfire detection system not being able to monitor the occurrence of wildfire promptly. In this paper, we propose a novel wildfire detection system using sound spectrum analysis based on the Internet of Things (IoT), which utilizes a wireless acoustic detection system to probe wildfire and distinguish the difference in the sound between the crown and the surface fire. ⋯ The results describe that the sound frequency of the crown fire is about 0-400 Hz, while the sound frequency of the surface fire ranges from 0 to 15,000 Hz. However, the accuracy of the classification method is affected by some factors, such as the distribution of sensors, the loss of energy in sound transmission, and the delay of data transmission. In the simulation experiments, the recognition rate of the method can reach about 70%.
-
In this paper, a new controller for an operating manipulator work in the space microgravity environment is proposed. First, on the basis of the load variation caused by microgravity, a sliding mode control method is used to model the gravity term, and the logistic function is introduced as the approaching function. An improved sliding mode reaching law is proposed to control the manipulator effectively, and Lyapunov theory is used to deduce its closed-loop stability. ⋯ Finally, the design of a manipulator system, which consists of a robot arm, dexterous hand, teleoperation system, central controller, and visual system, is presented. On-orbit maintenance and capture experiments are carried out successively. The effectiveness and reliability of the controller are verified, and the on-orbit operation tasks are completed successfully.
-
Smartwatches that are able to record a bipolar ECG and Einthoven leads were recently described. Nevertheless, for detection of ischemia or other cardiac diseases more leads are required, especially Wilson's chest leads. ⋯ Consecutive recording of six single-lead ECGs including Einthoven and Wilson-like leads by a smartwatch is feasible with good ECG signal quality. Thus, this simulated six-lead smartwatch ECG may be useable for the detection of cardiac diseases necessitating more than one ECG lead like myocardial ischemia or more complex cardia arrhythmias.
-
The development of wearable electronics has emphasized user-comfort, convenience, security, and improved medical functionality. Several previous research studies transformed various types of sensors into a wearable form to more closely monitor body signals and enable real-time, continuous sensing. ⋯ Also, state-of-the-art research related to the application of wearable sensor systems with wireless functionality is discussed, including electronic skin, smart contact lenses, neural interfaces, and retinal prostheses. Current challenges and prospects of wireless sensor systems are discussed.
-
The advancement of the Internet of Things (IoT) as a solution in diverse application domains has nurtured the expansion in the number of devices and data volume. Multiple platforms and protocols have been introduced and resulted in high device ubiquity and heterogeneity. However, currently available IoT architectures face challenges to accommodate the diversity in IoT devices or services operating under different operating systems and protocols. ⋯ Furthermore, a data-driven feedback function is included as a key feature of the proposed architecture to enable a greater degree of system automation and to reduce the dependency on mankind for data analysis and decision-making. The proposed architecture aims to tackle device interoperability, system reusability and the lack of data-driven functionality issues. Using a real-world use case on a proof-of-concept prototype, we examined the viability and usability of the proposed architecture.