Sensors (Basel, Switzerland)
-
This article addresses one of the main challenges related to the practical deployment of Internet of Things (IoT) solutions: the coordinated operation of entities at different infrastructures to support the automated orchestration of end-to-end Internet of Things services. This idea is referred to as "Internet of Things slicing" and is based on the network slicing concept already defined for the Fifth Generation (5G) of mobile networks. In this context, we present the architectural design of a slice orchestrator addressing the aforementioned challenge, based on well-known standard technologies and protocols. ⋯ The validation results obtained from the prototype prove the feasibility of the solution from a functional perspective, verifying its capacity to deploy Internet of Things related functions even on resource constrained platforms. This approach enables new application models where these Internet of Things related functions can be onboarded on small unmanned aerial vehicles, offering a flexible and cost-effective solution to deploy these functions at the network edge. In addition, this proposal can also be used on commercial cloud platforms, like the Google Compute Engine, showing that it can take advantage of the benefits of edge and cloud computing respectively.
-
Aeromagnetic surveys play an important role in geophysical exploration and many other fields. In many applications, magnetometers are installed aboard an aircraft to survey large areas. Due to its composition, an aircraft has its own magnetic field, which degrades the reliability of the measurements, and thus a technique (named aeromagnetic compensation) that reduces the magnetic interference field effect is required. ⋯ By selecting the variables that contribute less to the multicollinearity, different sub-models are built to describe the magnetic interference of the aircraft when flying in different orientations. This method restricts the impact of multicollinearity and improves the reliability of the measurements. Compared with the existing methods, the proposed method reduces the interference field more effectively, which is verified by a set of airborne tests.
-
This study investigates the potential of the limb ballistocardiogram (BCG) for unobtrusive estimation of cardiovascular (CV) parameters. In conjunction with the reference CV parameters (including diastolic, pulse, and systolic pressures, stroke volume, cardiac output, and total peripheral resistance), an upper-limb BCG based on an accelerometer embedded in a wearable armband and a lower-limb BCG based on a strain gauge embedded in a weighing scale were instrumented simultaneously with a finger photoplethysmogram (PPG). ⋯ Then, the relationship between the characteristic features associated with (i) the weighing scale BCG-PPG pair and (ii) the synthetic weighing scale BCG-PPG pair versus the CV parameters, was analyzed using the multivariate linear regression analysis. The results indicated that each of the CV parameters of interest may be accurately estimated by a combination of as few as two characteristic features in the upper-limb or lower-limb BCG, and also that the characteristic features recruited for the CV parameters were to a large extent relevant according to the physiological mechanism underlying the BCG.
-
Sensor systems for the Internet of Things (IoT) make it possible to continuously monitor people, gathering information without any extra effort from them. Thus, the IoT can be very helpful in the context of early disease detection, which can improve peoples' quality of life by applying the right treatment and measures at an early stage. This paper presents a new use of IoT sensor systems-we present a novel three-door smart cupboard that can measure the memory of a user, aiming at detecting potential memory losses. ⋯ The memory assessments of the smart cupboard were compared with a validated test of memory assessment about face-name associations and a self-reported test about self-perceived memory. We found a significant correlation between the smart cupboard results and both memory measurement methods. Thus, we conclude that the proposed novel smart cupboard successfully measured memory.
-
Clinical Trial
Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.
The electroencephalogram (EEG) can reflect brain activity and contains abundant information of different anesthetic states of the brain. It has been widely used for monitoring depth of anesthesia (DoA). In this study, we propose a method that combines multiple EEG-based features with artificial neural network (ANN) to assess the DoA. ⋯ The correlation coefficient between BIS and the index of this method was 0.892 ( p < 0.001 ). The results showed that the proposed method could well distinguish between awake and other anesthesia states. This method is promising and feasible for a monitoring system to assess the DoA.