Radiology
-
Multicenter Study
Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy.
Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. ⋯ The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 (P < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 Online supplemental material is available for this article.
-
Multicenter Study
Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT.
Background Despite its high sensitivity in diagnosing coronavirus disease 2019 (COVID-19) in a screening population, the chest CT appearance of COVID-19 pneumonia is thought to be nonspecific. Purpose To assess the performance of radiologists in the United States and China in differentiating COVID-19 from viral pneumonia at chest CT. Materials and Methods In this study, 219 patients with positive COVID-19, as determined with reverse-transcription polymerase chain reaction (RT-PCR) and abnormal chest CT findings, were retrospectively identified from seven Chinese hospitals in Hunan Province, China, from January 6 to February 20, 2020. ⋯ Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs 57%, P < .001), ground-glass opacity (91% vs 68%, P < .001), fine reticular opacity (56% vs 22%, P < .001), and vascular thickening (59% vs 22%, P < .001), but it was less likely to have a central and peripheral distribution (14% vs 35%, P < .001), pleural effusion (4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P = .002). Conclusion Radiologists in China and in the United States distinguished coronavirus disease 2019 from viral pneumonia at chest CT with moderate to high accuracy. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.
-
In December 2019, an outbreak of severe acute respiratory syndrome coronavirus 2 infection occurred in Wuhan, Hubei Province, China, and spread across China and beyond. On February 12, 2020, the World Health Organization officially named the disease caused by the novel coronavirus as coronavirus disease 2019 (COVID-19). ⋯ To date, CT findings have been recommended as major evidence for clinical diagnosis of COVID-19 in Hubei, China. This review focuses on the etiology, epidemiology, and clinical symptoms of COVID-19 while highlighting the role of chest CT in prevention and disease control.
-
Comparative Study
Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases.
Background Chest CT is used in the diagnosis of coronavirus disease 2019 (COVID-19) and is an important complement to reverse-transcription polymerase chain reaction (RT-PCR) tests. Purpose To investigate the diagnostic value and consistency of chest CT as compared with RT-PCR assay in COVID-19. Materials and Methods This study included 1014 patients in Wuhan, China, who underwent both chest CT and RT-PCR tests between January 6 and February 6, 2020. ⋯ Conclusion Chest CT has a high sensitivity for diagnosis of coronavirus disease 2019 (COVID-19). Chest CT may be considered as a primary tool for the current COVID-19 detection in epidemic areas. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.
-
Multicenter Study
Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19.
Background Current coronavirus disease 2019 (COVID-19) radiologic literature is dominated by CT, and a detailed description of chest radiography appearances in relation to the disease time course is lacking. Purpose To describe the time course and severity of findings of COVID-19 at chest radiography and correlate these with real-time reverse transcription polymerase chain reaction (RT-PCR) testing for severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2, nucleic acid. Materials and Methods This is a retrospective study of patients with COVID-19 confirmed by using RT-PCR and chest radiographic examinations who were admitted across four hospitals and evaluated between January and March 2020. ⋯ Pleural effusion was uncommon (two of 64; 3%). The severity of findings at chest radiography peaked at 10-12 days from the date of symptom onset. Conclusion Findings at chest radiography in patients with coronavirus disease 2019 frequently showed bilateral lower zone consolidation, which peaked at 10-12 days from symptom onset. © RSNA, 2020.