Research report (Health Effects Institute)
-
Res Rep Health Eff Inst · Nov 2010
Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.
Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. ⋯ The small differences between mortality effects for deaths coded using ICD-9 and ICD-10 show that the change in coding had a minimal impact on our study. Few published papers have reported synergistic effects of extremely high temperatures and air pollution on mortality, and further studies are needed. Establishing causal links between heat, PM10, and mortality will require further toxicologic and cohort studies.
-
Res Rep Health Eff Inst · Nov 2010
Part 1. A time-series study of ambient air pollution and daily mortality in Shanghai, China.
Although the relation between outdoor air pollution and daily mortality has been examined in several Chinese cities, there are still a number of key scientific issues to be addressed concerning the health effects of air pollution in China. Given the changes over the past decade in concentrations and sources of air pollution (e.g., the change from one predominant source [coal combustion], which was typical of the twentieth century, to a mix of sources [coal combustion and motor-vehicle emissions]) and transition in China, it is worthwhile to investigate the acute effects of outdoor air pollution on mortality outcomes in the country. We conducted a time-series study to investigate the relation between outdoor air pollution and daily mortality in Shanghai using four years of daily data (2001-2004). ⋯ We concluded that short-term exposure to outdoor air pollution (PM10, SO2, NO2, and O3) was associated with daily mortality in Shanghai and that gaseous pollutants might have independent health effects in the city. Overall, the results of the study appeared largely consistent with those reported in other locations worldwide. Further research will be needed to disentangle the effects of the various pollutants and to gain more conclusive insights into the influence of various sociodemographic characteristics (e.g., sex, age, and socioeconomic status) and of season on the associations between air pollution and daily mortality.
-
Res Rep Health Eff Inst · Nov 2010
Part 5. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality.
In recent years, Asia has experienced rapid economic growth and a deteriorating environment caused by the increasing use of fossil fuels. Although the deleterious effects of air pollution from fossil-fuel combustion have been demonstrated in many Western nations, few comparable studies have been conducted in Asia. Time-series studies of daily mortality in Asian cities can contribute important new information to the existing body of knowledge about air pollution and health. Not only can these studies verify important health effects of air pollution in local regions in Asia, they can also help determine the relevance of existing air pollution studies to mortality and morbidity for policymaking and environmental controls. In addition, the studies can help identify factors that might modify associations between air pollution and health effects in various populations and environmental conditions. Collaborative multicity studies in Asia-especially when designed, conducted, and analyzed using a common protocol-will provide more robust air pollution effect estimates for the region as well as relevant, supportable estimates of local adverse health effects needed by environmental and public-health policymakers. ⋯ For mortality due to all natural (nonaccidental) causes at all ages, the effects of air pollutants per 10-microg/m3 increase in concentration was found to be higher in Bangkok than in the three Chinese cities, with the exception of the effect of NO2 in Wuhan. The magnitude of the effects for cardiovascular and respiratory mortality were generally higher than for all natural mortality at all ages. In addition, the effects associated with PM10 and O3 in all natural, cardiovascular; and respiratory mortality were found to be higher in Bangkok than in the three Chinese cities. The explanation for these three findings might be related to consistently higher daily mean temperatures in Bangkok, variations in average time spent outdoors by the susceptible populations, and the fact that less air conditioning is available and used in Bangkok than in the other cities. However, when pollutant concentrations were incorporated into the excess risk estimates through the use of interquartile range (IQR), the excess risk was more comparable across the four cities. We found that the increases in effects among older age groups were greater in Bangkok than in the other three cities. After excluding data on extremely high concentrations of PM10 in Bangkok, the effect estimate associated with PM10 concentrations decreased in Bangkok (suggesting a convex relationship between risk and PM10, where risk levels off at high concentrations) instead of increasing, as it did in the other cities. This leveling off of effect estimates at high concentrations might be related to differences in vulnerability and exposure of the population to air pollution as well as to the sources of the air pollutant. IMPLICATIONS OF THE STUDY: The PAPA project is the first coordinated Asian multicity air pollution study ever published; this signifies the beginning of an era of cooperation and collaboration in Asia, with the development of a common protocol for coordination, data management, and analysis. The results of the study demonstrated that air pollution in Asia is a significant public health burden, especially given the high concentrations of pollutants and high-density populations in major cities. When compared with the effect estimates reported in the research literature of North America and Western Europe, the study's effect estimates for PM10 were generally similar and the effect estimates for gaseous pollutants were relatively higher. In Bangkok, however, a tropical city where total exposures to outdoor pollution might be higher than in most other cities, the observed effects were greater than those reported in the previous (i.e., Western) studies. In general, the results suggested that, even though social and environmental conditions across Asia might vary, it is still generally appropriate to apply to Asia the effect estimates for other health outcomes from previous studies in the West. The results also strongly support the adoption of the global air quality guidelines recently announced by WHO.
-
Res Rep Health Eff Inst · Nov 2010
Part 4. Interaction between air pollution and respiratory viruses: time-series study of daily mortality and hospital admissions in Hong Kong.
Populations in Asia are not only at risk of harm to their health through environmental degradation as a result of worsening pollution problems but also constantly threatened by recurring and emerging influenza epidemics and. pandemics. Situated in the area with the world's fastest growing economy and close to hypothetical epicenters of influenza transmission, Hong Kong offers a special opportunity for testing environmental management and public health surveillance in the region. In the Public Health and Air Pollution in Asia (PAPA*) project, the Hong Kong research team assessed the health effects of air pollution and influenza as well as the interaction between them. The team also assessed disparities in the health effects of air pollution between relatively deprived and more affluent areas in Hong Kong. The aim was to provide answers to outstanding research questions relating to the short-term effects of air pollution on mortality and hospital admissions; the health effects of influenza with a view to validating different measures of influenza activity according to virologic data; the confounding effects of influenza on estimates of the health effects of air pollution; the modifying effects of influenza on the health effects of air pollution; and the modifying effects of neighborhood social deprivation on the health effects of air pollution. ⋯ Data on mortality and hospital admissions for all natural causes, as well as the subcategories of cardiovascular diseases (CVD) and respiratory diseases (RD), were derived from the Hong Kong Census and Statistics Department and the Hospital Authority. Daily concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter with an aerodynamic diameter < or = 10 pm (PM10); and ozone (O3) were derived from eight monitoring stations with hourly data that were at least 75% complete during the study period. Three measures of influenza and respiratory syncytial virus (RSV) activity were derived from positive isolates of specimens in the virology laboratory of Queen Mary Hospital (QMH), the main clinical teaching center at The University of Hong Kong and part of the Hong Kong Hospital Authority network of teaching hospitals: influenza intensity (defined as the weekly proportion of positive isolates of influenza in the total number of specimens received for diagnostic tests); the presence of influenza epidemic (defined as a period when the weekly frequency of these positive isolates is > or = 4% of the annual total number of positive isolates [i.e., twice the expected mean value] in two or more consecutive weeks); and influenza predominance (defined as a period of influenza epidemic when the weekly frequency of RSV was less than 2% for two or more consecutive weeks). The weekly proportion of positive isolates of RSV in total specimens was determined in the same way as for influenza intensity. A social deprivation index (SDI) was defined by taking the average of the proportions of households or persons with the following six characteristics in each geographic area using the census statistics: unemployment; household income < U.S. $250 per month; no schooling at all; never-married status; one-person household; and subtenancy. A Poisson regression with quasi-likelihood to account for overdispersion was used to develop core models for daily health outcomes, with a natural spline smoothing function to filter out seasonal patterns and long-term trends in this time-series study of daily mortality and hospital admissions, and with adjustment for days of the week, temperature, and relative humidity (RH). Air pollutant concentration values were entered into the core model to assess the health effects of specific pollutants. The possible confounding effects of influenza were assessed by observing changes in magnitude of the effect estimate when each influenza measurement was entered into the model; and interactions between air pollution and influenza were assessed by entering the terms for the product of the air pollutant concentration and a measurement of influenza activity into the model. A Poisson regression analysis was performed to assess the effects of air pollution in each area belonging to low, middle, or high social deprivation strata according to the tertiles of the SDI. The differences in air pollution effects were tested by a case-only approach. RESULTS The excess risk (ER) estimates for the short-term effects of air pollution on mortality and hospitalization for broad categories of disease were greater in those 65 years and older than in the all-ages group and were consistent with other studies. The biggest health impacts were seen at the extremes of the age range. The three measures employed for influenza activity based on virologic data-one based on a proportion and the other two using frequencies of positive influenza isolates-were found to produce consistent health impact estimates, in terms of statistical significance. In general, we found that adjustment for influenza activity in air pollution health effect estimations took account of relatively small confounding effects. However, we conclude that it is worthwhile to make the adjustment in a sensitivity analysis and to obtain the best possible range of effect estimates from the data, especially for respiratory hospitalization. Interestingly, interaction effects were found between influenza activity and air pollution in the estimated risks for hospitalization for RD, particularly for 03. These results could be explained in terms of the detrimental effects of both influenza viruses and air pollutants, which may be synergistic or competing with each other, though the mechanism is still unknown. The results deserve further study and the attention of both public health policy makers and virologists in considering prevention strategies. IMPLICATIONS In Hong Kong, where air pollution may pose more of a health threat than in North American and Western European cities, the effects of air pollution also interact with influenza and with residence in socially deprived areas, potentially leading to additional harm. Asian governments should be aware of the combined risks to the health of the population when considering environmental protection and management in the context of economic, urban, and infrastructure development. This is the first study in Asia to examine the interactions between air pollution, influenza, and social deprivation from an epidemiologic perspective. The biologic mechanisms are still unclear, and further research is needed.
-
Res Rep Health Eff Inst · Nov 2010
Part 3. Estimating the effects of air pollution on mortality in Bangkok, Thailand.
While the effects of particulate matter (PM*) on mortality have been well documented in North America and Western Europe, considerably less is known about its effects in developing countries in Asia. Existing air pollution data in Bangkok, Thailand, indicate that airborne concentrations of PM < or = 10 pm in aerodynamic diameter (PM10) are as high or higher than those experienced in most cities in North America and Western Europe. At the same time, the demographics, activity patterns, and background health status of the population, as well as the chemical composition of PM, are different in Bangkok. ⋯ Finally, the concentration-response functions for most of the pollutants appear to be linear. Thus, our sensitivity analyses results suggest an impact of pollution on mortality in Bangkok that is fairly consistent. They also provide support for the extrapolation of results from health effects studies conducted in North America and Western Europe to other parts of the world, including developing countries in Asia.