Research report (Health Effects Institute)
-
Res Rep Health Eff Inst · Aug 2012
Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel.
After the implementation of a regulation restricting sulfur to 0.5% by weight in fuel on July 1, 1990, in Hong Kong, sulfur dioxide (SO2*) levels fell by 45% on average and as much as 80% in the most polluted districts (Hedley et al. 2002). In addition, a reduction of respiratory symptoms and an improvement in bronchial hyperresponsiveness in children were observed (Peters et al. 1996; Wong et al. 1998). A recent time-series study (Hedley et al. 2002) found an immediate reduction in mortality during the cool season at six months after the intervention, followed by an increase in cool-season mortality in the second and third years, suggesting that the reduction in pollution was associated with a delay in mortality. Proportional changes in mortality trends between the 5-year periods before and after the intervention were measured as relative risks and used to assess gains in life expectancy using the life table method (Hedley et al. 2002). To further explore the relation between changes in pollution-related mortality before and after the intervention, our study had three objectives: (1) to evaluate the short-term effects on mortality of changes in the pollutant mix after the Hong Kong sulfur intervention, particularly with changes in the particulate matter (PM) chemical species; (2) to improve the methodology for assessment of the health impact in terms of changes in life expectancy using linear regression models; and (3) to develop an approach for analyzing changes in life expectancy from Poisson regression models. A fourth overarching objective was to determine the relation between short- and long-term benefits due to an improvement in air quality. ⋯ Our results on the excess risks of mortality showed exposure to chemical species to be a health hazard. However, the statistical power was not sufficient to detect the differences between the pre- and post-intervention periods in Hong Kong due to the data limitations (specifically, the chemical species data were available only once every 6 days, and data were not available from some monitoring stations). Further work is needed to develop methods for maximizing the information from the data in order to assess any changes in effects due to the intervention. With complete daily air pollution and mortality data over a long period, time-series analysis methods can be applied to assess the short- and long-term effects of air pollution, in terms of changes in life expectancy. Further work is warranted to assess the duration and pattern of the health effects from an air pollution pulse (i.e., an episode of a rapid rise in air pollution) so as to determine an appropriate length and constraint on the distributed-lag assessment model.