Experimental hematology
-
Experimental hematology · Aug 2000
Differential effects of interleukin-3, interleukin-7, interleukin 15, and granulocyte-macrophage colony-stimulating factor in the generation of natural killer and B cells from primitive human fetal liver progenitors.
The regulatory roles of a number of early-acting growth factors on the generation of natural killer (NK) cells and B cells from primitive progenitors were studied. Experiments focused on the contributions of granulocyte-macrophage colony-stimulates factor (GM-CSF) and interleukin-3 (IL-3) to the regulation of the early events of lymphopoiesis. Two progenitor populations isolated from human fetal liver were studied, CD38(-)CD34(++)lineage(-) (Lin(-)) cells (candidate hematopoietic stem cells [HSCs]) and the more mature CD38(+)CD34(++)Lin(-) cells. ⋯ The in vitro generated B cells were CD10(+), CD19(+), HLA-DR(+), HLA-DQ(+), and some were CD20(+), but no cytoplasmic or surface immunoglobulin M expression was observed. In contrast with NK lymphopoiesis, GM-CSF, IL-3, and IL-15 had no effect on the generation of B cells from CD38(-)CD34(++)Lin(-) cells, and GM-CSF inhibited B-cell generation from CD38(+)CD34(++)Lin(-) progenitors. These findings indicate a differential regulation of NK and B lymphopoiesis beginning in the early stages of hematopoiesis as exemplified by the distinctive roles of IL-7, IL-15, GM-CSF, and IL-3.