Studies in health technology and informatics
-
Stud Health Technol Inform · Jan 2011
Toward a simulation and assessment method for the practice of camera-guided rigid bronchoscopy.
We have developed a way to measure performance during a camera-guided rigid bronchoscopy using manikin-based simulation. In an effort to measure contact pressures within the airway during a rigid bronchoscopy, we instrumented pressure sensors in a commercially available bronchoscopy task trainer. ⋯ However, novices touched a greater number of areas than experts, showing that novices induce a higher number of unnecessary soft-tissue contact compared to experts. Moreover, our results show that experts exert significantly less soft tissue pressure compared to novices.
-
Stud Health Technol Inform · Jan 2011
Multicenter StudyBattlefield tracheal intubation training using virtual simulation: a multi center operational assessment of video laryngoscope technology.
Airway management is an essential skill in providing care in trauma situations. The video laryngoscope is a tool which offers improvement in teaching airway management skills and in managing airways of trauma patients on the far forward battlefield. An Operational Assessment (OA) of videolaryngoscope technology for medical training and airway management was conducted by the Center for Advanced Technology and Telemedicine (at the University of Nebraska Medical Center, Omaha, NE) for the US Air Force Modernization Command to validate this technology in the provision of Out of OR airway management and airway management training in military simulation centers. The value for both the training and performance of intubations was highly rated and the majority of respondents indicated interest in having a video laryngoscope in their facility.
-
Mobile eyetracking is a recent method enabling research on attention during real-life behavior. With the EyeSeeCam, we have recently presented a mobile eye-tracking device, whose camera-motion device (gazecam) records movies orientated in user's direction of gaze. ⋯ Such information is vital, if gaze-tracking shall be combined with tasks requiring 3D information in the peri-personal space, such as grasping. Hence our method substantially extends the application range for mobile gaze-tracking devices and makes a decisive step towards their routine application in standardized clinical settings.
-
Stud Health Technol Inform · Jan 2011
EU-ADR healthcare database network vs. spontaneous reporting system database: preliminary comparison of signal detection.
The EU-ADR project aims to exploit different European electronic healthcare records (EHR) databases for drug safety signal detection. In this paper we report the preliminary results concerning the comparison of signal detection between EU-ADR network and two spontaneous reporting databases, the Food and Drug Administration and World Health Organization databases. EU-ADR data sources consist of eight databases in four countries (Denmark, Italy, Netherlands, and United Kingdom) that are virtually linked through distributed data network. ⋯ The highest proportion of signals detected in SRSs was found for BE, ARF and AS, while for ARF, and UGIB in EU-ADR. In conclusion, it seems that EU-ADR longitudinal database network may complement traditional spontaneous reporting system for signal detection, especially for those adverse events that are frequent in general population and are not commonly thought to be drug-induced. The methodology for signal detection in EU-ADR is still under development and testing phase.
-
Stud Health Technol Inform · Jan 2011
Medication related computerized decision support system (CDSS): make it a clinicians' partner!
Medication related Computerized Decision Support System (CDSS) are known to have a positive impact on Adverse Drug Events (ADE) prevention but they face acceptance problems due to over alerting and usability issues. We present here a Human factors approach to the design of these Clinical Decision Support (CDS) functions and to their integration into different Electronic Health Record (EHR) / Computerized Physicians Order Entry (CPOE) systems, so that the resulting CDSS corresponds to the users needs and fits clinical workflows and cognitive processes. We used ethnographic observations completed with semi-structured interviews to analyse existing work situations and work processes. ⋯ This makes the system able to catch the context of the monitoring of the drugs through their corresponding lab tests and lab results (e.g. kalemia for potassium) and also part of the context of the clinical status of the patient (actual lab values, but also diseases and other pathologies that are identified as potential causes of the ADE e.g. renal insufficiency and potassium). We show that making the system able to catch the monitoring and clinical contexts opens interesting opportunities for the design of the CDS information content and display mode. Implementing this model would allow the CDSS to take into account the actions already engaged by the healthcare team and to adapt the information delivered to the monitoring and clinical context, thus making the CDSS a partner to the clinicians, nurses and pharmacists.