Journal of diabetes science and technology
-
J Diabetes Sci Technol · Jul 2011
Clinical TrialA stepwise approach toward closed-loop blood glucose control for intensive care unit patients: results from a feasibility study in type 1 diabetic subjects using vascular microdialysis with infrared spectrometry and a model predictive control algorithm.
Glycemic control can reduce the mortality and morbidity of intensive care patients. The CLINICIP (closed-loop insulin infusion for critically ill patients) project aimed to develop a closed-loop control system for this patient group. Following a stepwise approach, we combined three independently tested subparts to form a semiautomatic closed-loop system and evaluated it with respect to safety and performance aspects by testing it in subjects with type 1 diabetes mellitus (T1DM) in a first feasibility trial. ⋯ Data of the feasibility trial illustrate the device being effective in controlling glycemia in T1DM subjects. However, the monitoring part of the loop must be improved with respect to accuracy and precision before testing the system in the target population.
-
J Diabetes Sci Technol · Jul 2011
Characterizing blood glucose variability using new metrics with continuous glucose monitoring data.
Glycemic variability contributes to oxidative stress, which has been linked to the pathogenesis of the long-term complications of diabetes. Currently, the best metric for assessing glycemic variability is mean amplitude of glycemic excursion (MAGE); however, MAGE is not in routine clinical use. A glycemic variability metric in routine clinical use could potentially be an important measure of overall glucose control and a predictor of diabetes complication risk not detected by glycosylated hemoglobin (A1C) levels. This study aimed to develop and evaluate new automated metrics of glycemic variability that could be routinely applied to continuous glucose monitoring (CGM) data to assess and enhance glucose control. ⋯ We have developed a new automated metric to assess overall glycemic variability in people with diabetes using CGM, which could easily be incorporated into commercially available CGM software. Additional work to validate and refine this metric is underway. Future studies are planned to correlate the metric with both urinary 8-iso-prostaglandin F2 alpha excretion and serum 1,5-anhydroglucitol levels to see how well it identifies patients with high glycemic variability and increased markers of oxidative stress to assess risk for long-term complications of diabetes.
-
J Diabetes Sci Technol · Jul 2011
CommentPreanalytic and analytic accuracy: toward more realistic and meaningful self-monitoring of blood glucose submissions for regulatory approval.
Dr. Cembrowski provides an analysis of an article by Harrison and colleagues in this issue of Journal of Diabetes Science and Technology in which the authors describe the evaluation of a new device for self-monitoring of blood glucose, the Bayer CONTOUR® blood glucose monitoring system.