Molecular biology reports
-
Molecular biology reports · Dec 2020
Association of resistin (rs3745367) and urotensin II (rs228648 and rs2890565) gene polymorphisms with risk of type 2 diabetes mellitus in Indian population.
Insulin resistance may become the most powerful predictor of future development of type 2 diabetes mellitus (T2DM) and a therapeutic target for the treatment of the same. Both Resistin, an adipose derived peptide hormone and Urotensin II a potent vasoconstrictor, are reported to be involved in the development of insulin resistance and T2DM but the results remain contradictory. Therefore, investigations were carried out to study the association of T2DM and single nucleotide polymorphism (SNP) in Resistin (RETN) gene at rs3745367 (+ 299 G > A) and Urotensin II (UTS2) gene at rs228648 (+ 143 G > A) and rs2890565 (+ 3836 C > T) in a North Indian population. ⋯ Regression analysis revealed that SNP rs2890565 and HOMA-IR were independently associated with the risk of development of T2DM when three SNPs were taken as independent variable adjusted for clinical variables. Among four haplotypes, A/T was found associated with increased risk of T2DM as determined for rs228648 and rs2890565 of UTS2 gene. It can be concluded from these results that polymorphism at rs3745367 of RETN gene and at rs2890565 of UTS2 gene are associated with risk of T2DM in North Indian population.
-
Molecular biology reports · Dec 2020
ReviewPsychedelics as an emerging novel intervention in the treatment of substance use disorder: a review.
Classical psychedelics are a group of drugs characterized by their activation of the serotonin-2A (5-hydroxytryptamine-2A; 5-HT2A) receptor and the unique hallucinogenic and mystical-type experiences that result. After a substantial period of restrictions limiting investigations into the therapeutic potential of psychedelics, a relatively recent recommencement of interest has sparked the burgeoning possibility for these drugs to play a part in the treatment of a wide array of psychopathologies. One of the most promising is in the study of addiction. ⋯ The neural targets for these psychedelics are varied and underlie a complex mechanism of action-modulating multiple neural networks. It is believed that these agents allow for the reorganization of disordered neural pathways in the default mode network and attenuate maladaptive signaling in mesolimbic reward circuitry. The aim of this review is to examine the current standing of evidence regarding psychedelic psychopharmacology and to provide an overview of the use and effectiveness of these drugs in the treatment of SUD, alcohol use disorder, and for smoking cessation.
-
Molecular biology reports · Nov 2020
Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells.
Clinical use of cyclophosphamide (CP) causes apoptosis-induced cell death in the immune system, liver, heart and kidneys. To prevent the cells against side effects of CP and its metabolites, increasing antioxidant defence mechanism of the body with supplemental antioxidants is important. Therefore, there is a requirement for effective agents which could prevent the healthy cells from the harmful effects of drug-induced toxicities. ⋯ The aim of this study was to evaluate likelihood ameliorative effects of caffeic acid, chrysin, quercetin and ferulic acid against CP-induced toxicity in SH-SY5Y neuron cells. In this study protective effects of quercetin, chrysin, caffeic acid and ferulic acid against CP-induced cell toxicity in SH-SY5Y cells was evaluated by cell proliferation assay, lipid peroxidation (LPO) analysis to decipher antioxidant capacity, tunel assay and qRT-PCR experiments to examine anti-apoptotic activities of the antioxidants. The results showed that CP-induced cell toxicity in SH-SY5Y cells and treatments with the antioxidants suppressed the cell death. Our results suggests that these anti-oxidants protected SH-SY5Y cells via a decrease in LPO levels, downregulating the expression of Cas-3, Cyt c and Bax and upregulating expression of anti-apoptotic gene Bcl-2. The use of antioxidant as nutritional supplements, and in particular of caffeic acid, chrysin, quercetin and ferulic acid, reduce apoptotic effects of CP in SH-SY5Y cells that could add insight into therapeutic approaches to CP-induced cell injuries.
-
Molecular biology reports · Oct 2020
Dexmedetomidine alleviates sevoflurane-induced neurotoxicity via mitophagy signaling.
Dexmedetomidine, a class of α2-adrenergic agonist, was reported to exert a neuroprotective effect on sevoflurane-induced neurotoxicity. However, the specific mechanisms have not been fully clarified yet. The aim of our study is to uncover the role of dexmedetomidine in sevoflurane-induced neurotoxicity. The rats pretreated with dexmedetomidine and/or Rapamycin 3-Methyladenine were housed in a box containing 30% O2, 68% N2 and 2% sevoflurane for 4 h for anesthesia. 24 h after drug injection, Morris water maze test was used to evaluate rats' learning and memory ability. ⋯ Dexmedetomidine alleviated sevoflurane-induced nerve injury and the impairment of learning and memory abilities. Additionally, dexmedetomidine inhibited sevoflurane-induced cell apoptosis in hippocampus. In mechanism, dexmedetomidine activated mitophagy to mitigate neurotoxicity by enhancing LC3II/LC3I ratio, HSP60, Beclin-1, CypD, VDAC1 and Tom20 protein levels in hippocampus. Dexmedetomidine alleviates sevoflurane-induced neurotoxicity via mitophagy signaling, offering a potential strategy for sevoflurane-induced neurotoxicity treatment.
-
Molecular biology reports · Oct 2020
Clinical TrialInvestigation of telomere related gene mutations in idiopathic pulmonary fibrosis.
Idiopathic Pulmonary Fibrosis (IPF) is the most common type of Idiopathic Interstitial Pneumonias (IIP). The aim of this study is to determine the mutation of variants in four telomere-related genes and to determine the possible relationship between these mutations and telomere shortening in order to contribute to the understanding of the pathophysiology of IPF. For this study, 34 individuals with IPF, 32 individuals with non-IPF ILD (Interstitial Lung Disease), and 31 healthy controls between the ages of 40 and 85 were included. ⋯ However, in terms of the allele distribution for two genes, statistically significant difference was found in IPF and non-IPF ILD patients (TERT; p = 0.002 and TERC; p = 0.001). According to the telomere length measurement, the telomeres of the patients were shorter than of the control group (p = 0.0001). In compliance with the results of our analysis, it is thought that genes that have allelic significance from the point of gene mutations as well as telomere shortening may be risk factors for the disease.