Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Automated beat onset and peak detection algorithm for field-collected photoplethysmograms.
Recent reports suggest that photoplethysmography (PPG), which is a component of routine pulse oximetry, may be useful for detecting hypovolemia. An essential step in extracting and analyzing common PPG features is the robust identification of onset and peak locations of the vascular beats, despite varying beat morphologies and major oscillations in the baseline. Some prior reports used manual analysis of the PPG waveform; however, for systematic widespread use, an automated method is required. ⋯ We validated the algorithm by clinician evaluation of 100 randomly selected PPG waveform samples. For 99% of the beats, the algorithm was able to credibly identify the onsets and peaks of vascular beats, although the precise locations were ambiguous, given the very noisy data from actual clinical operations. The algorithm appears promising, and future consideration of its diagnostic capabilities and limitations is warranted.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Hemodynamic models of cerebral aneurysms for assessment of effect of vessel geometry on risk of rupture.
Surgical decisions on treatment of cerebral aneurysms are based predominantly on aneurysm size. This study has assessed the influence of parent vessel geometry on intra-aneurysmal flow patterns and mass flow rate using computational fluid dynamics and finite element modeling of straight and curved vessels feeding saccular aneurysms of varying size and aspect ratio. ⋯ The dependency of parent vessel geometry is a function of aneurysm aspect ratio and shows minimal dependency at an aspect ratio of 1.68. These findings could be used for improved quantification of risk of rupture of cerebral aneurysms detected from clinical imaging modalities and to aid surgical decision making.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Critiquing treatment and setting ventilatory parameters by using physiological modeling.
A modeling system is presented that can be used to predict the effects of ventilatory settings on the blood gases of patients on mechanical ventilation. The system uses a physiological model of the patient that includes lungs, body tissue, and brain tissue compartments. The model includes the effects of changes in the cardiac output and cerebral blood flow and lung mechanical factors. The system has applications in critiquing different treatment options and can be used alone or in combination with decision support systems to set ventilatory parameters and optimize treatment for patients on mechanical ventilation.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Electrode design for high frequency block: effect of bipolar separation on block thresholds and the onset response.
The delivery of high frequency alternating currents (HFAC) to peripheral nerves has been shown to produce a rapid and reversible nerve conduction block at the site of the electrode, and holds therapeutic promise for diseases associated with undesired or pathological neural activity. It has been known since 1939 that the configuration of an electrode used for nerve block can impact the quality of the block, but to date no formal study of the impact of electrode design on high frequency nerve block has been performed. Using a mammalian small animal model, it is demonstrated that the contact separation distance for a bipolar nerve cuff electrode can impact two important factors related to high frequency nerve block: the amplitude of HFAC required to block the nerve (block threshold), and the degree to which the transient "onset response" which always occurs when HFAC is first applied to peripheral nerves, is present. This study suggests that a bipolar electrode with a separation distance of 1.0 mm minimizes current delivery while producing high frequency block with a minimal onset response in the rat sciatic nerve.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Revisiting the video stethoscope: an application of digital signal processing software (Goldwave) to monitoring ventilation in intubated patients.
Problems with tracheal intubation and mechanical ventilation are potentially important causes of perioperative morbidity and mortality. We have developed a method of monitoring the ventilation of both lungs during general anesthesia that is an advanced digital version of a more primitive analog technique developed over two decades ago. We used two miniature electret microphones connected to regular chest pieces, placing the assemblies on the anterior chest wall about 4 inches below the clavicle in the midclavicular line. ⋯ We also hypothesized that as a result of noise and anatomical variations that under conditions of bilateral mechanical ventilation the obtained plot would be very different from a simple 45 degree line. The data obtained supports these hypotheses. This preliminary study suggests that our technique may help provide a practical real-time warning system for detecting endotracheal tube malpositions, and may help build on the work of other investigators.