Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Comparative StudyAn ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.
This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. ⋯ A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Obstructive sleep apnea detection using SVM-based classification of ECG signal features.
Sleep apnea is the instance when one either has pauses of breathing in their sleep, or has very low breath while asleep. This pause in breathing can range in frequency and duration. Obstructive sleep apnea (OSA) is the common form of sleep apnea, which is currently tested through polysomnography (PSG) at sleep labs. ⋯ The presented classification technique is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high accuracy of 96.5% or higher. Furthermore, the proposed system can be used as a basis for future development of a tool for OSA screening.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
EEG-based detection of awakening from isoflurane anesthesia in rats.
In animal studies, reliable measures for depth of anesthesia are frequently required. Previous findings suggest that the continuous depth of anesthesia indices developed for humans might not be adequate for rats whose EEG changes during anesthesia represent more of quick transitions between discrete states. In this paper, the automatic EEG-based detection of awakening from anesthesia was studied in rats. ⋯ The method was tested with EEGs recorded from ten rats recovering from isoflurane anesthesia. The algorithm was shown to be able to detect the sudden change in the EEG related to the moment of awakening with a precision comparable to careful visual inspection. Our findings suggest that monitoring such signal changes may offer an interesting alternative to the application of continuous depth of anesthesia indices when avoiding the awakening of the animal during e.g. a clinical experiment.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Estimation of venous oxygenation saturation using the finger Photoplethysmograph (PPG) waveform.
In this study, finger photoplethysmograph data obtained from twelve patients undergoing cardiothoracic surgery were analyzed in order to estimate the venous saturation utilizing the modulations created by the positive pressure ventilation in the AC Photoplethysmograph (PPG) signals. The PPG signals were analyzed in the time-domain using a conventional pulse oximetry algorithm to produce estimations of arterial oxygen saturation. ⋯ The results showed that there was no significant difference in the traditionally-derived (time-domain) arterial saturation and the instantaneous arterial saturation. However, the instantaneous venous saturation was found to be significantly lower than the time-domain estimated and instantaneous arterial saturation (P=<0.001).
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
The photoplethysmographic (PPG) signal has the potential to aid in the acquisition and analysis of heart rate variability (HRV) signal: a non-invasive quantitative marker of the autonomic nervous system that could be used to assess cardiac health and other physiologic conditions. A low-power wireless PPG device was custom-developed to monitor, acquire and analyze the arterial pulse in the finger. The system consisted of an optical sensor to detect arterial pulse as variations in reflected light intensity, signal conditioning circuitry to process the reflected light signal, a microcontroller to control PPG signal acquisition, digitization and wireless transmission, a receiver to collect the transmitted digital data and convert them back to their analog representations. ⋯ Kubios was able to generate a report sheet with the time domain and frequency domain parameters of the acquired data. These features were then compared against those calculated by MATLAB. The preliminary results demonstrate that the prototype wireless device could be used to perform HRV signal acquisition and analysis.