Biological psychiatry
-
Biological psychiatry · Mar 2017
Neonatal Cytokine Profiles Associated With Autism Spectrum Disorder.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that can be reliably diagnosed at age 24 months. Immunological phenomena, including skewed cytokine production, have been observed among children with ASD. Little is known about whether immune dysregulation is present before diagnosis of ASD. ⋯ This study is part of a growing effort to identify early biological markers for ASD. We demonstrate that peripheral cytokine profiles at birth are associated with ASD later in childhood and that cytokine profiles vary depending on ASD severity. Cytokines have complex roles in neurodevelopment, and dysregulated levels may be indicative of genetic differences and environmental exposures or their interactions that relate to ASD.
-
Biological psychiatry · Mar 2017
ReviewEmerging Roles for the Gut Microbiome in Autism Spectrum Disorder.
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. ⋯ We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.
-
Biological psychiatry · Mar 2017
ReviewMaternal Immune Activation and Autism Spectrum Disorder: From Rodents to Nonhuman and Human Primates.
A subset of women who are exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental or neuropsychiatric disorder. Although epidemiology studies have primarily focused on the association between maternal infection and an increased risk of offspring schizophrenia, mounting evidence indicates that maternal infection may also increase the risk of autism spectrum disorder. A number of factors, including genetic susceptibility, the intensity and timing of the infection, and exposure to additional aversive postnatal events, may influence the extent to which maternal infection alters fetal brain development and which disease phenotype (autism spectrum disorder, schizophrenia, other neurodevelopmental disorders) is expressed. ⋯ Maternal immune activation models in mice, rats, and nonhuman primates suggest that the maternal immune response is the critical link between exposure to infection during pregnancy and subsequent changes in brain and behavioral development of offspring. However, differences in the type, severity, and timing of prenatal immune challenge paired with inconsistencies in behavioral phenotyping approaches have hindered the translation of preclinical results to human studies. Here we highlight the promises and limitations of the maternal immune activation model as a preclinical tool to study prenatal risk factors for autism spectrum disorder, and suggest specific changes to improve reproducibility and maximize translational potential.