Scientific reports
-
As a component of self-regulation, delay discounting (DD) refers to an individual's tendency to prefer smaller-but-sooner rewards over larger-but-later rewards and plays an essential role in many aspects of human behavior. Although numerous studies have examined the neural underpinnings of DD in adults, there are far fewer studies focusing on the neurobiological correlates underlying DD in adolescents. Here, we investigated the associations between individual differences in DD and the fractional amplitude of low-frequency fluctuations (fALFF) and resting-state functional connectivity (RSFC) in 228 high school students using resting-state functional magnetic resonance imaging (RS-fMRI). ⋯ At the connectivity level, DD was positively correlated with the RSFC between the dACC and the left dorsolateral prefrontal cortex (DLPFC), a critical functional circuit in the cognitive control network. Furthermore, these effects persisted even after adjusting for the influences of general intelligence and trait impulsivity. Overall, this study reveals the fALFF and RSFC as the functional brain basis of DD in late adolescents, aiding to strengthen and corroborate our understanding of the neural underpinnings of DD.
-
Developmental dysplasia of the hip (DDH) is a congenital or developmental deformation or misalignment of the hip joint that is affected by environmental and genetic factors. Recently, polymorphisms in both TGFB1 and IL-6 have been identified as being significantly associated with hip osteoarthritis in Caucasians. In this study, we conducted a case-control study involving 4,206 Han Chinese individuals to investigate the effects of TGFB1 and IL-6 on the disease status and severity of DDH. ⋯ No significant results were obtained in an association study focusing on the severity of DDH and epistasis analysis. Our findings support an important role for TGFB1 in the risk of DDH. Further research is needed to validate the weak association between rs1800796 in IL-6 and DDH.
-
Brain injury elicits a systemic acute-phase response (APR), which is responsible for co-ordinating the peripheral immunological response to injury. To date, the mechanisms responsible for signalling the presence of injury or disease to selectively activate responses in distant organs were unclear. Circulating endogenous extracellular vesicles (EVs) are increased after brain injury and have the potential to carry targeted injury signals around the body. ⋯ Transfer of blood-borne EVs from brain-injured animals was also enough to suppress exploratory behaviours in recipient naïve animals. EVs derived from brain endothelial cell cultures treated with IL-1β also activated an APR and altered behaviour in recipient animals. These experiments reveal that inflammation-induced circulating EVs derived from endothelial cells are able to initiate the APR to brain injury and are sufficient to generate the associated sickness behaviours, and are the first demonstration that EVs are capable of modifying behavioural responses.
-
Does feeling back stiffness actually reflect having a stiff back? This research interrogates the long-held question of what informs our subjective experiences of bodily state. We propose a new hypothesis: feelings of back stiffness are a protective perceptual construct, rather than reflecting biomechanical properties of the back. This has far-reaching implications for treatment of pain/stiffness but also for our understanding of bodily feelings. ⋯ Rather, those who report feeling stiff exhibit self-protective responses: they significantly overestimate force applied to their spine, yet are better at detecting changes in this force than those who do not report feeling stiff. This perceptual error can be manipulated: providing auditory input in synchrony to forces applied to the spine modulates prediction accuracy in both groups, without altering actual stiffness, demonstrating that feeling stiff is a multisensory perceptual inference consistent with protection. Together, this presents a compelling argument against the prevailing view that feeling stiff is an isomorphic marker of the biomechanical characteristics of the back.
-
Honey was used to treat wounds since ancient times till nowadays. The present study aimed at preparing a honey-based hydrogel and assay its antimicrobial properties and wound healing activity; in-vitro and in-vivo. Topical honey hydrogel formulations were prepared using three honey concentrations with gelling agents; chitosan and carbopol 934. ⋯ This formula was tested for in-vivo burn healing using burn-induced wounds in mice. The formula was evaluated for burn healing and antibacterial activities compared to commercial product. 75% honey-chitosan hydrogel was found to possess highest healing rate of burns. The present study concludes that 75% honey-chitosan hydrogel possesses greater wound healing activity compared to commercial preparation and could be safely used as an effective natural topical wound healing treatment.