Scientific reports
-
(-)-Trans-Δ9-tetrahydrocannabinol (Δ9-THC) is the main compound responsible for the intoxicant activity of Cannabis sativa L. The length of the side alkyl chain influences the biological activity of this cannabinoid. In particular, synthetic analogues of Δ9-THC with a longer side chain have shown cannabimimetic properties far higher than Δ9-THC itself. ⋯ The binding activity of Δ9-THCP against human CB1 receptor in vitro (Ki = 1.2 nM) resulted similar to that of CP55940 (Ki = 0.9 nM), a potent full CB1 agonist. In the cannabinoid tetrad pharmacological test, Δ9-THCP induced hypomotility, analgesia, catalepsy and decreased rectal temperature indicating a THC-like cannabimimetic activity. The presence of this new phytocannabinoid could account for the pharmacological properties of some cannabis varieties difficult to explain by the presence of the sole Δ9-THC.
-
The environment experienced during spaceflight may impact the immune system and the thymus appears to undergo atrophy during spaceflight. However, molecular aspects of this thymic atrophy remain to be elucidated. In this study, we analysed the thymi of mice on board the international space station (ISS) for approximately 1 month. ⋯ However, RNA sequencing analysis of the thymus showed significantly reduced expression of cell cycle-regulating genes in two independent spaceflight samples. These reductions were partially countered by 1 × g exposure during the space flights. Thus, our data suggest that spaceflight leads to reduced proliferation of thymic cells, thereby reducing the size of the thymus, and exposure to 1 × g might alleviate the impairment of thymus homeostasis induced by spaceflight.
-
Comparative Study Clinical Trial
Differences Between Central Venous and Cerebral Tissue Oxygen Saturation in Anaesthetised Patients With Diabetes Mellitus.
The brain has high oxygen extraction, thus the regional cerebral tissue oxygen saturation (rSO2) is lower than the central venous oxygen saturation (ScvO2). We hypothesised that diabetes widens the physiological saturation gap between ScvO2 and rSO2 (gSO2), and the width of this gap may vary during various phases of cardiac surgery. Cardiac surgery patients with (n = 48) and without (n = 91) type 2 diabetes mellitus (T2DM) underwent either off-pump coronary artery bypass (OPCAB) or other cardiac surgery necessitating cardiopulmonary bypass (CPB) were enrolled. rSO2 was measured by near-infrared spectroscopy (NIRS) and ScvO2 was determined simultaneously from central venous blood. rSO2 was registered before and after anaesthesia induction and at different stages of the surgery. ⋯ While gSO2 increased at the beginning of CPB in T2DM and control patients, no significant intraoperative changes were observed during the OPCAB surgery. The wide gap between ScvO2 and rSO2 and their uncoupled relationship in patients with diabetes indicate that disturbances in the cortical oxygen saturation cannot be predicted from the global clinical parameter, the ScvO2. Thus, our findings advocate the monitoring value of NIRS in T2DM.
-
Benign prostatic hyperplasia (BPH) is one of the most common diseases in the urinary system of elderly men. Pao extract is an herbal preparation of the bark of the Amazon rainforest tree Pao Pereira (Geissospermum vellosii), which was reported to inhibit prostate cancer cell proliferation. Herein we investigated the therapeutic potential of Pao extract against BPH development in a testosterone-induced BPH rat model. ⋯ Moreover, Pao extract and its active component, flavopereirine, induced cytotoxicity on human prostate epithelial RWPE-1 cells in a dose- and time- dependent manner with G2/M arrest. Consistently, Pao extract and flavopereirine suppressed the expression levels of SRD5A1, AR and PSA, respectively. Together, these data demonstrated that Pao extract suppresses testosterone-induced BPH development through inhibiting AR activity and expression, and suggested that Pao extract may be a promising and relative safe agent for BPH.
-
This study utilizes Raman spectroscopy to analyze the burn-induced collagen conformational changes in ex vivo porcine skin tissue. Raman spectra of wavenumbers 500-2000 cm-1 were measured for unburnt skin as well as four different burn conditions: (i) 200 °F for 10 s, (ii) 200 °F for the 30 s, (iii) 450 °F for 10 s and (iv) 450 °F for 30 s. ⋯ The deconvolution of the amide I region (1580-1720 cm-1) and the analysis of the sub-bands reveal a change of the secondary structure of the collagen from the α-like helix dominated to the β-aggregate dominated one. Such conformational changes may explain the softening of mechanical response in burnt tissues reported in the literature.