Scientific reports
-
The coronavirus disease 2019 (COVID-19) pandemic has led to the worldwide implementation of unprecedented public protection measures. On the 17th of March, the French government announced a lockdown of the population for 8 weeks. This monocentric study assessed the impact of this lockdown on the musculoskeletal injuries treated at the emergency department as well as the surgical indications. ⋯ We observed a significant increase in the weekly emergency department patient admissions between the early and the late lockdown period (161.5 ± 22.9, 235.5 ± 27.7, respectively, p = .028). A pronounced decrease in the incidence of musculoskeletal injuries was observed secondary to the lockdown measures, with emergency department patient admissions being halved and surgical indications being reduced by a third. The increase in musculoskeletal injuries during the late confinement period and the higher incidence of severe trauma highlights the importance of maintaining a functional trauma center organization with an inter-hospital transfer policy in case of a COVID-19s wave lockdown.
-
The new coronavirus disease 2019 (COVID-19) has been emerged as a rapidly spreading pandemic. The disease is thought to spread mainly from person-to-person through respiratory droplets produced when an infected person coughs, sneezes, or talks. The pathogen of COVID-19 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ⋯ The period between the onset of initial symptoms and the potential clinical deterioration could provide an opportunity for prevention of pneumonia by blocking or significantly reducing the transport of viruses towards the acinar airways. Therefore, even non-specific treatment forms like disinfection of the throat and nasal and oral mucosa may effectively keep the viral load of the upper airways low enough to avoid or prolong the progression of the disease. In addition, using a tissue or cloth in order to absorb droplets and aerosol particles emitted by own coughs of infected patients before re-inhalation is highly recommended even if they are alone in quarantine.
-
The severity of COVID-19 lung disease is higher in the elderly and people with pre-existing co-morbidities. People who were born preterm may be at greater risk for COVID-19 because their early exposure to oxygen (hyperoxia) at birth increases the severity of respiratory viral infections. Hyperoxia at birth increases the severity of influenza A virus infections in adult mice by reducing the number of alveolar epithelial type 2 (AT2) cells. ⋯ It also stimulated expression of TMPRSS2 in the lung. Increased expression of SARS-CoV-2 receptors was blocked by mitoTEMPO, a mitochondrial superoxide scavenger that reduced oxidative stress and DNA damage seen in oxygen-exposed mice. Our finding that hyperoxia enhances the age-dependent expression of SARS-CoV-2 receptors in mice helps explain why COVID-19 lung disease is greater in the elderly and people with pre-existing co-morbidities.
-
Meta Analysis
A meta-analysis of accuracy and sensitivity of chest CT and RT-PCR in COVID-19 diagnosis.
Nowadays there is an ongoing acute respiratory outbreak caused by the novel highly contagious coronavirus (COVID-19). The diagnostic protocol is based on quantitative reverse-transcription polymerase chain reaction (RT-PCR) and chests CT scan, with uncertain accuracy. This meta-analysis study determines the diagnostic value of an initial chest CT scan in patients with COVID-19 infection in comparison with RT-PCR. ⋯ The overall sensitivity, specificity, positive predictive value, and negative predictive value of chest CT scan compared to RT-PCR were 87% (95% CI 85-90%), 46% (95% CI 29-63%), 69% (95% CI 56-72%), and 89% (95% CI 82-96%), respectively. It is important to rely on the repeated RT-PCR three times to give 99% accuracy, especially in negative samples. Regarding the overall diagnostic sensitivity of 87% for chest CT, the RT-PCR testing is essential and should be repeated to escape misdiagnosis.
-
Observational Study
Risk factors associated with 28-day all-cause mortality in older severe COVID-19 patients in Wuhan, China: a retrospective observational study.
We aimed to analyse clinical characteristics and identify risk factors predicting all-cause mortality in older patients with severe coronavirus disease 2019 (COVID-19). A total of 281 older patients with severe COVID-19 were categorized into two age groups (60-79 years and ≥ 80 years). Epidemiological, clinical, and laboratory data, and outcome were obtained. ⋯ LDH, osmotic pressure and SOFA were valuable for predicting 28-day all-cause mortality, whereas the area under the receiver operating characteristic curve of LDH was the largest, with sensitivity of 86.0% and specificity of 80.8%. Therefore, patients with severe COVID-19 aged ≥ 80 years had worse condition and higher mortality than did those aged 60-79 years, and anorexia and comorbidities including hypertension, diabetes, COPD, elevated plasma osmotic pressure, LDH, and high SOFA were independent risk factors associated with 28-day all-cause mortality in older patients with severe COVID-19. LDH may have the highest predictive value for 28-day all-cause mortality in all examined factors.