Scientific reports
-
Randomized Controlled Trial
Capnography monitoring the hypoventilation during the induction of bronchoscopic sedation: A randomized controlled trial.
We hypothesize that capnography could detect hypoventilation during induction of bronchoscopic sedation and starting bronchoscopy following hypoventilation, may decrease hypoxemia. Patients were randomized to: starting bronchoscopy when hypoventilation (hypopnea, two successive breaths of at least 50% reduction of the peak wave compared to baseline or apnea, no wave for 10 seconds) (Study group, n = 55), or when the Observer Assessment of Alertness and Sedation scale (OAAS) was less than 4 (Control group, n = 59). Propofol infusion was titrated to maintain stable vital signs and sedative levels. ⋯ In the study group, the induction time was shorter (p = 0.03) and subjects with any two events of hypoxemia during sedation, maintenance or recovery were less than the control group (1.8 vs. 18.6%, p < 0.01). Patient tolerance, wakefulness during sedation, and cooperation were similar in both groups. Significant hypoventilation occurred during the induction and start bronchoscopy following hypoventilation may decrease hypoxemia without compromising patient tolerance.
-
Human consciousness is considered a result of the synchronous "humming" of multiple dynamic networks. We performed a dynamic functional connectivity analysis using resting state functional magnetic resonance imaging (rsfMRI) in 14 patients before and during a propofol infusion to characterize the sedation-induced alterations in consciousness. A sliding 36-second window was used to derive 59 time points of whole brain integrated local connectivity measurements. ⋯ Compared with the awake state, sedation was associated with reduced cortical connectivity fluctuations in several areas connected to the default mode network and around the perirolandic cortex with a significantly decreased correlation of connectivity between their anatomical homologues. In addition, sedation was associated with increased connectivity fluctuations in the frequency range of 0.027 to 0.063 Hz in several deep nuclear regions, including the cerebellum, thalamus, basal ganglia and insula. These findings advance our understanding of sedation-induced altered consciousness by visualizing the altered dynamics in several cortical and subcortical regions and support the concept of defining consciousness as a dynamic and integrated network.
-
The "myodural bridge" was described in literatures as a dense fibrous tissue connecting the sub-occipital musculature with the spinal dura mater in human studies. Now the concept of "myodural bridge" was perceived as an exact anatomical structure presumably essential for critical physiological functions in human body, and might exist in other mammals as well. To determine the existence of the "myodural bridge" in other mammals and to lay a foundation for the functional study, we examined representatives in five different mammalian orders. ⋯ We proposed that the "myodural bridge", as an evolutionally conserved structure, presents in many other mammals. Moreover, we believed that the "myodural bridge" might be a homologous organ in mammals. Thus, this study could provide an insight for our understanding the physiological significance of the "myodural bridge", especially in human.
-
We consider the recently suggested model of a multiverse based on a ferrofluid. When the ferrofluid is subjected to a modest external magnetic field, the nanoparticles inside the ferrofluid form small hyperbolic metamaterial domains, which from the electromagnetic standpoint behave as individual "Minkowski universes" exhibiting different "laws of physics", such as different strength of effective gravity, different versions of modified Newtonian dynamics (MOND) and different radiation lifetimes. ⋯ Some "universes" are better fine-tuned than others to sustain the excited states of these species. Thus, the ferrofluid-based metamaterial "multiverse" may be used to study models of MOND and to illustrate the fine-tuning mechanism in cosmology.
-
High density lipoprotein cholesterol (HDL-C) has been reported as a significant indicator of systemic inflammation. The association underlying HDL-C and persistent organ failure (POF), pancreatic necrosis (PNec) and mortality in acute pancreatitis (AP) has not been evaluated. From 2007 to 2016, consecutive AP patients with admission lipid profiles assessment were included in this study. ⋯ Moreover, there was a positive trend for the association across increasing HDL-C quartiles and POF, PNec and mortality after multivariable analysis (p values were <0.001, <0.001 and 0.043, respectively). The AUC of HDL-C for the outcomes were comparable to that of Ranson score for diagnosing POF (0.778 vs. 0.678; P < 0.001), PNec (0.734 vs. 0.701; P = 0.143) and mortality (0.768 vs. 0.745; P = 0.516). Decreased HDL-C value is an independent risk factor for the incidence of POF, PNec and in-hospital mortality in AP.