Journal of orthopaedic surgery and research
-
The sustentacular screw is essential to maintain the stability of the subtalar joint during ORIF (open reduction with internal fixation) of calcaneal fractures. Currently, the screw is still inserted based on surgeons' anatomical experiences and nearly 40% of screws are misplaced from the sustentaculum. Previous studies demonstrated some methods of sustentacular screw placement through anatomical measurements or navigation system. The purposes of this study are to design an assistant guidance device that can effectively improve the accuracy of sustentacular screw placement and to compare the accuracy of this technique with traditional screw placement based on experience. ⋯ The guidance-assisted technique is a convenient approach that can effectively improve the accuracy of sustentacular screw placement during the ORIF of calcaneal fractures. This study provides a novel technique that significantly facilitates sustentacular screw insertion and improves its accuracy.
-
Comminuted fractures of the proximal humerus are generally treated with the locking plate system, and clinical results are satisfactory. However, unstable support of the medial column results in varus malunion and screw perforation. We designed a novel medial anatomical locking plate (MLP) to directly support the medial column. Theoretically, the combined application of locking plate and MLP (LPMP) would directly provide strong dual-column stability. We hypothesized that the LPMP could provide greater construct stability than the locking plate alone (LP), locking plate combined with a fibular graft (LPSG), and locking plate combined with a distal radius plate (LPDP). ⋯ From the finite element viewpoint, the LPMP method provided both lateral and medial direct support. The LPMP system was effective in treating proximal humeral fracture with an unstable medial column.