NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2021
FLAIR-only joint volumetric analysis of brain lesions and atrophy in clinically isolated syndrome (CIS) suggestive of multiple sclerosis.
MRI assessment in multiple sclerosis (MS) focuses on the presence of typical white matter (WM) lesions. Neurodegeneration characterised by brain atrophy is recognised in the research field as an important prognostic factor. It is not routinely reported clinically, in part due to difficulty in achieving reproducible measurements. Automated MRI quantification of WM lesions and brain volume could provide important clinical monitoring data. In general, lesion quantification relies on both T1 and FLAIR input images, while tissue volumetry relies on T1. However, T1-weighted scans are not routinely included in the clinical MS protocol, limiting the utility of automated quantification. ⋯ FLAIR-only automated segmentation of WM lesions and brain volumes were consistent with results obtained through conventional methods and had the ability to demonstrate biological effects in our study population. Imaging protocol harmonisation and validation with other MS phenotypes could facilitate the integration of automated WM lesion volume and brain atrophy analysis as clinical tools in radiological MS reporting.
-
NeuroImage. Clinical · Jan 2021
High-b diffusivity of MS lesions in cervical spinal cord using ultrahigh-b DWI (UHb-DWI).
The purpose of this study was to investigate UHb-rDWI signal in white matter tracts of the cervical spinal cord (CSC) and compare quantitative values between healthy control WM with both MS NAWM and MS WM lesions. ⋯ UHb-DWI of the CSC reveals a marked difference in signal-b-curves and DH values in MS lesions compared to NAWM and healthy control WM. Based on physical principles, we interpret these altered observations of quantitative diffusion values to be indicative of demyelination. Further studies in animal models will be required to fully interpret UHb-DWI quantitative diffusion values during demyelination and remyelination.
-
NeuroImage. Clinical · Jan 2021
Regional brain morphology predicts pain relief in trigeminal neuralgia.
Trigeminal neuralgia, a severe chronic neuropathic pain disorder, is widely believed to be amenable to surgical treatments. Nearly 20% of patients, however, do not have adequate pain relief after surgery. Objective tools for personalized pre-treatment prognostication of pain relief following surgical interventions can minimize unnecessary surgeries and thus are of substantial benefit for patients and clinicians. ⋯ Our findings support the use of machine learning techniques in subsequent investigations of chronic neuropathic pain. Furthermore, our multivariate framework provides foundation for future development of generalizable, artificial intelligence-driven tools for chronic neuropathic pain treatments.
-
NeuroImage. Clinical · Jan 2021
Brain iron assessment in patients with First-episode schizophrenia using quantitative susceptibility mapping.
Decreased serum ferritin level was recently found in schizophrenia. Whether the brain iron concentration in schizophrenia exists abnormality is of research significance. Quantitative susceptibility mapping (QSM) was used in this study to assess brain iron changes in the grey matter nuclei of patients with first-episode schizophrenia. ⋯ This study reveals decreased iron concentration in grey matter nuclei of patients with first-episode schizophrenia. QSM provides superior sensitivity over R2* in the evaluation of schizophrenia-related brain iron changes. It demonstrated that QSM may be a potential biomarker for further understanding the pathophysiological mechanism of first-episode schizophrenia.
-
NeuroImage. Clinical · Jan 2021
White matter hyperintensities classified according to intensity and spatial location reveal specific associations with cognitive performance.
White matter hyperintensities (WMHs) on T2-weighted images are radiological signs of cerebral small vessel disease. As their total volume is variably associated with cognition, a new approach that integrates multiple radiological criteria is warranted. Location may matter, as periventricular WMHs have been shown to be associated with cognitive impairments. ⋯ Results showed that periventricular T1w-hypointense WMHs were significantly associated with poorer performance in the trail making A (p = 0.011), digit symbol (p = 0.028) and digit coding (p = 0.009) tests. We found no association between total WMH volume and cognition. These findings suggest that sub-classifying WMHs according to both location and intensity in T1w reveals specific associations with cognitive performance.