NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2014
Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome.
Pediatric complex regional pain syndrome (P-CRPS) offers a unique model of chronic neuropathic pain as it either resolves spontaneously or through therapeutic interventions in most patients. Here we evaluated brain changes in well-characterized children and adolescents with P-CRPS by measuring resting state networks before and following a brief (median = 3 weeks) but intensive physical and psychological treatment program, and compared them to matched healthy controls. ⋯ Correlation of network connectivities with spontaneous pain measures pre- and post-treatment indicated concomitant reductions in connectivity in salience, central executive, default mode and sensorimotor networks (treatment effects). These results suggest a rapid alteration in global brain networks with treatment and provide a venue to assess brain changes in CRPS pre- and post-treatment, and to evaluate therapeutic effects.
-
NeuroImage. Clinical · Jan 2014
White matter tract integrity metrics reflect the vulnerability of late-myelinating tracts in Alzheimer's disease.
Post-mortem and imaging studies have observed that white matter (WM) degenerates in a pattern inverse to myelin development, suggesting preferential regional vulnerabilities influencing cognitive decline in AD. This study applied novel WM tract integrity (WMTI) metrics derived from diffusional kurtosis imaging (DKI) to examine WM tissue properties in AD within this framework. ⋯ WMTI metrics in late-myelinating tracts correlated with semantic verbal fluency, a cognitive function known to decline in AD. These findings corroborate the preferential vulnerability of late-myelinating tracts, and illustrate an application of WMTI metrics to characterizing the regional course of WM changes in AD.
-
NeuroImage. Clinical · Jan 2014
Axonal deficits in young adults with High Functioning Autism and their impact on processing speed.
Microstructural white matter deficits in Autism Spectrum Disorders (ASD) have been suggested by both histological findings and Diffusion Tensor Imaging (DTI) studies, which show reduced fractional anisotropy (FA) and increased mean diffusivity (MD). However, imaging reports are generally not consistent across studies and the underlying physiological causes of the reported differences in FA and MD remain poorly understood. In this study, we sought to further characterize white matter deficits in ASD by employing an advanced diffusion imaging method, the Diffusional Kurtosis Imaging (DKI), and a two-compartment diffusion model of white matter. ⋯ Reduced processing speed significantly correlated with decreased faxon and Daxon in several tracts. faxon of the left cortico-spinal tract and superior longitudinal fasciculi showed good accuracy in discriminating the HFA and TDC groups. In conclusion, these findings suggest altered axonal microstructure in young adults with HFA which is associated with reduced processing speed. Compartment-specific diffusion metrics appear to improve specificity and sensitivity to white matter deficits in this population.
-
NeuroImage. Clinical · Jan 2014
Progressive white matter changes following anterior temporal lobe resection for epilepsy.
Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy (TLE). Widespread abnormalities in diffusion parameters involving the ipsilateral temporal lobe white matter and extending into extratemporal white matter have been shown in cross-sectional studies in TLE. However longitudinal changes following surgery have been less well addressed. ⋯ However more superiorly in the corona radiata, internal and external capsules and nearby tracts, changes compatible with plasticity are observed (increased fractional anisotropy and axial diffusivity, reduced radial diffusivity). There is little progression between 3-4 months and 12 months following surgery in patients with left TLE, but the changes become more widespread in patients with right TLE suggesting that plasticity occurs more slowly in this population. The neuropsychological correlates of such plasticity should be explored further.
-
NeuroImage. Clinical · Jan 2014
Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks.
In multiple sclerosis (MS), brain atrophy quantification is affected by white matter lesions. LEAP and FSL-lesion_filling, replace lesion voxels with white matter intensities; however, they require precise lesion identification on 3DT1-images. ⋯ These results demonstrate that for global GM volumetry, precise lesion masks on 3DT1 images can be replaced by co-registered 2DT2 lesion masks. This makes lesion-filling a feasible method for GM atrophy measurements in MS.