NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2016
Early grey matter changes in structural covariance networks in Huntington's disease.
Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. ⋯ Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.
-
NeuroImage. Clinical · Jan 2016
ReviewTranslating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI.
A recent meeting of international imaging experts sponsored by the International Spinal Research Trust (ISRT) and the Wings for Life Foundation identified 5 state-of-the-art MRI techniques with potential to transform the field of spinal cord imaging by elucidating elements of the microstructure and function: diffusion tensor imaging (DTI), magnetization transfer (MT), myelin water fraction (MWF), MR spectroscopy (MRS), and functional MRI (fMRI). However, the progress toward clinical translation of these techniques has not been established. ⋯ State-of-the-art spinal cord MRI techniques are emerging with great potential to improve the diagnosis and management of various spinal pathologies, but the current body of evidence has only showed limited clinical utility to date. Among these imaging tools DTI is the most mature, but further work is necessary to standardize and validate its use before it will be adopted in the clinical realm. Large, well-designed studies with a priori hypotheses, standardized acquisition methods, detailed clinical data collection, and robust automated analysis techniques are needed to fully demonstrate the potential of these rapidly evolving techniques.
-
NeuroImage. Clinical · Jan 2016
Clinical TrialLongitudinal imaging in C9orf72 mutation carriers: Relationship to phenotype.
Expansion mutations in the C9orf72 gene may cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), or mixtures of the two clinical phenotypes. Different imaging findings have been described for C9orf72-associated diseases in comparison with sporadic patients with the same phenotypes, but it is uncertain whether different phenotypes have a common genotype-associated imaging signature. To address this question, 27 unrelated C9orf72 expansion mutation carriers (C9 +) with varied phenotypes, 28 age-matched healthy controls and 22 patients with sporadic ALS (sALS) underwent 3T MRI scanning and clinical phenotyping. ⋯ Ventricular volume increased in C9 + patients with FTD and ALS-FTD phenotypes and remained stable in asymptomatic C9 + subjects. We conclude that diffuse atrophy is a common underlying feature of disease associated with C9orf72 mutations across its clinical phenotypes. Ventricular enlargement can be measured over a 6-month time frame, and appears to be faster in patients with cognitive impairment.
-
NeuroImage. Clinical · Jan 2016
Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects upper and lower motor neurons. Observational and intervention studies can be tracked using clinical measures such as the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) but for a complete understanding of disease progression, objective in vivo biomarkers of both central and peripheral motor pathway pathology are highly desirable. The aim of this study was to determine the utility of structural and diffusion imaging as central nervous system biomarkers compared to the standard clinical measure, ALSFRS-R, to track longitudinal evolution using three time-point measurements. ⋯ Furthermore, the availability of three time points was able to indicate that there was a linear progression in both clinical and fractional anisotropy measures adding to the validity of these results. The results indicate that DTI is clearly a superior imaging marker compared to atrophy for tracking the evolution of the disease and can act as a central nervous biomarker in longitudinal studies. It remains, however, less sensitive than the ALSFRS-R score for monitoring decline over time.
-
NeuroImage. Clinical · Jan 2016
Lenticulostriate arterial distribution pathology may underlie pediatric anoxic brain injury in drowning.
Drowning is a leading cause of neurological morbidity and mortality in young children. Anoxic brain injury (ABI) can result from nonfatal drowning and typically entails substantial neurological impairment. The neuropathology of drowning-induced pediatric ABI is not well established. ⋯ Group-wise VBM analyses demonstrated predominantly central subcortical pathology in the ABI group in both gray matter (bilateral basal ganglia nuclei) and white matter (bilateral external and posterior internal capsules) (P < 0.001); minimal damage was found outside of these deep subcortical regions. These highly spatially convergent gray and white matter findings reflect the vascular distribution of perforating lenticulostriate arteries, an end-arterial watershed zone, and suggest that vascular distribution may be a more important determinant of tissue loss than oxygen metabolic rate in pediatric ABI. Further, these results inform future directions for diagnostic and therapeutic modalities.