NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2019
Striatal DAT and extrastriatal SERT binding in early-stage Parkinson's disease and dementia with Lewy bodies, compared with healthy controls: An 123I-FP-CIT SPECT study.
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are thought to be part of a spectrum: both have a clinical profile including symptoms associated with dopaminergic and serotonergic loss, yet few imaging studies have focused on serotonergic neurodegeneration in both disorders. We aimed to study degeneration of terminals with dopamine and serotonin transporter (DAT and SERT, respectively) in patients with early-stage PD and DLB relative to healthy controls, using 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) single photon emission computed tomography (SPECT). We conducted region of interest (ROI) and voxel-based analyses on 123I-FP-CIT SPECT scans. ⋯ In the voxel-based analysis, PD and DLB patients had significantly lower striatal binding than healthy controls. Both PD patients in the early disease stages and DLB patients have reduced availability of striatal DAT, and DLB patients lower hypothalamic SERT compared with healthy controls. These observations add to the growing body of evidence that PD and DLB are not merely dopaminergic diseases, thereby providing additional clinicopathological insights.
-
NeuroImage. Clinical · Jan 2019
Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18F-FDG-PET imaging.
Disease-modifying treatment trials are increasingly advanced to the prodromal or preclinical phase of Alzheimer's disease (AD), and inclusion criteria are based on biomarkers rather than clinical symptoms. Therefore, it is of great interest to determine which biomarkers should be combined to accurately predict conversion from mild cognitive impairment (MCI) to AD dementia. However, up to date, only few studies performed a complete A/T/N subject characterization using each of the CSF and imaging markers, or they only investigated long-term (≥ 2 years) prognosis. ⋯ Patients with MCI converted to AD dementia at an annual rate of 31%, which could be best predicted by combining neuropsychological testing (visuospatial construction skills) with either MRI-based HV or 18F-FDG-PET. Combining all three markers resulted in 96% specificity and 92% sensitivity. Neither amyloid-PET nor CSF biomarkers could discriminate short-term converters from non-converters.
-
NeuroImage. Clinical · Jan 2019
White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm.
The underlying microstructural properties of white matter differences in children born very preterm (<32 weeks gestational age) can be investigated in depth using multi-shell diffusion imaging. The present study compared white matter across the whole brain using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics in children born very preterm and full-term children at six years of age. We also investigated associations between white matter microstructure with early brain injury and developmental outcomes. ⋯ Children born very preterm exhibit lower FA and higher ODI than full-term children. NODDI metrics provide more biologically specific information beyond DTI metrics as well as additional information of the impact of prematurity and white matter microstructure on cognitive outcomes at six years of age.
-
NeuroImage. Clinical · Jan 2019
Different patterns of white matter changes after successful surgery of mesial temporal lobe epilepsy.
To explore the dynamic changes of white matters following anterior temporal lobectomy (ATL) in mesial temporal lobe epilepsy (MTLE) patients who achieved seizure-free at two-year follow-up. ⋯ FA changes after successful ATL presented as four distinct patterns, reflecting different structural adaptions following epilepsy surgery. Some FA increases indicated the reversibility of preoperative diffusion abnormalities and the possibility of structural reorganization, especially in the contralateral hemisphere.
-
NeuroImage. Clinical · Jan 2019
Visual responsiveness in sensorimotor cortex is increased following amputation and reduced after mirror therapy.
Phantom limb pain (PLP) following amputation, which is experienced by the vast majority of amputees, has been reported to be relieved with daily sessions of mirror therapy. During each session, a mirror is used to view the reflected image of the intact limb moving, providing visual feedback consistent with the movement of the missing/phantom limb. To investigate potential neural correlates of the treatment effect, we measured brain responses in volunteers with unilateral leg amputation using functional magnetic resonance imaging (fMRI) during a four-week course of mirror therapy. ⋯ A similar pattern of results was also observed in extrastriate and parietal regions typically responsive to viewing hand actions, but not in regions corresponding to secondary somatosensory cortex. Finally, there was a significant correlation between initial visual responsiveness in sensorimotor cortex and reduction in PLP suggesting a potential marker for predicting efficacy of mirror therapy. Thus, enhanced visual responsiveness in sensorimotor cortex is associated with PLP and modulated over the course of mirror therapy.