NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2017
Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage.
In many cerebral grey matter structures including the neocortex, spreading depolarization (SD) is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH) and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. ⋯ We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury.
-
NeuroImage. Clinical · Jan 2017
Structurofunctional resting-state networks correlate with motor function in chronic stroke.
Motor function and recovery after stroke likely rely directly on the residual anatomical connections in the brain and its resting-state functional connectivity. Both structural and functional properties of cortical networks after stroke are revealed using multimodal magnetic resonance imaging (MRI). Specifically, functional connectivity MRI (fcMRI) can extract functional networks of the brain at rest, while structural connectivity can be estimated from white matter fiber orientations measured with high angular-resolution diffusion imaging (HARDI). A model that marries these two techniques may be the key to understanding functional recovery after stroke. In this study, a novel set of voxel-level measures of structurofunctional correlations (SFC) was developed and tested in a group of chronic stroke subjects. ⋯ The results demonstrate that changes after a stroke in both intrinsic and network-based structurofunctional correlations at rest are correlated with motor function, underscoring the importance of residual structural connectivity in cortical networks.
-
NeuroImage. Clinical · Jan 2017
Activation of dominant hemisphere association cortex during naming as a function of cognitive performance in mild traumatic brain injury: Insights into mechanisms of lexical access.
Patients with a history of mild traumatic brain injury (mTBI) and objective cognitive deficits frequently experience word finding difficulties in normal conversation. We sought to improve our understanding of this phenomenon by determining if the scores on standardized cognitive testing are correlated with measures of brain activity evoked in a word retrieval task (confrontational picture naming). The study participants (n = 57) were military service members with a history of mTBI. ⋯ These findings may indicate weak afferent inputs to and within an extended cortical network including association cortex of the dominant hemisphere in patients with low cognitive performance. The association between word finding difficulties and low cognitive performance may therefore be the result of a diffuse pathophysiological process affecting distributed neuronal networks serving a wide range of cognitive processes. These findings also provide support for a parallel processing model of lexical access.
-
NeuroImage. Clinical · Jan 2016
Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone.
To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. ⋯ Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity.
-
NeuroImage. Clinical · Jan 2016
Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs.
Although cerebral edema is a major cause of death and deterioration following hemispheric stroke, there remains no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated that reduction in intracranial cerebrospinal fluid (CSF) volume (∆ CSF) on serial computed tomography (CT) scans provides an accurate measure of cerebral edema severity, which may aid in early triaging of stroke patients for craniectomy. However, application of such a volumetric approach would be too cumbersome to perform manually on serial scans in a real-world setting. ⋯ When we applied the algorithm trained from images of one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans. This algorithm will allow us to efficiently and accurately measure the evolution of cerebral edema in future studies including large multi-site patient populations.