NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2015
Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28.
Evidence from human post mortem, in vivo and animal model studies implicates the neuroimmune system and activated microglia in the pathology of amyotrophic lateral sclerosis. The study aim was to further evaluate in vivo neuroinflammation in individuals with amyotrophic lateral sclerosis using [(11)C]-PBR28 positron emission tomography. Ten patients with amyotrophic lateral sclerosis (seven males, three females, 38-68 years) and ten age- and [(11)C]-PBR28 binding affinity-matched healthy volunteers (six males, four females, 33-65 years) completed a positron emission tomography scan. ⋯ In patients those values were positively correlated with upper motor neuron burden scores (r = 0.69, p < 0.05), and negatively correlated with the amyotrophic lateral sclerosis functional rating scale (r = -0.66, p < 0.05). Increased in vivo glial activation in motor cortices, that correlates with phenotype, complements previous histopathological reports. Further studies will determine the role of [(11)C]-PBR28 as a marker of treatments that target neuroinflammation.
-
NeuroImage. Clinical · Jan 2015
Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem.
During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. ⋯ The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.
-
NeuroImage. Clinical · Jan 2015
Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury.
A barrier in the diagnosis of mild traumatic brain injury (mTBI) stems from the lack of measures that are adequately sensitive in detecting mild head injuries. MRI and CT are typically negative in mTBI patients with persistent symptoms of post-concussive syndrome (PCS), and characteristic difficulties in sustaining attention often go undetected on neuropsychological testing, which can be insensitive to momentary lapses in concentration. Conversely, visual tracking strongly depends on sustained attention over time and is impaired in chronic mTBI patients, especially when tracking an occluded target. ⋯ Impaired tracking concurred with abnormal beta activity, which was suppressed in the parietal cortex, especially the right hemisphere, and enhanced in left caudate and frontal-temporal areas. Regional beta-amplitude demonstrated high classification accuracy (92%) compared to eye-tracking (65%) and neuropsychological variables (80%). These findings show that deficient internal anticipatory control in mTBI is associated with altered beta activity, which is remarkably sensitive given the heterogeneity of injuries.
-
NeuroImage. Clinical · Jan 2015
White matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study.
Pediatric traumatic brain injury often results in significant long-term deficits in mastery of reading ability. This study aimed to identify white matter pathways that, when damaged, predicted reading deficits in children. Based on the dual-route model of word reading, we predicted that integrity of the inferior fronto-occipital fasciculus would be related to performance in sight word identification while integrity of the superior longitudinal fasciculus would be related to performance in phonemic decoding. ⋯ No association was identified between the inferior fronto-occipital fasciculus and sight word reading or phonemic decoding. Reading fluency was associated with the integrity of the cingulum bundle. These findings support dissociable pathways predicting word reading and fluency using Diffusion Tensor Imaging and provide additional information for developing models of acquired reading deficits by specifying areas of brain damage which may predict reading deficits following recovery from the acute phase of TBI.
-
NeuroImage. Clinical · Jan 2015
Diffuse alterations in grey and white matter associated with cognitive impairment in Shwachman-Diamond syndrome: evidence from a multimodal approach.
Shwachman-Diamond syndrome is a rare recessive genetic disease caused by mutations in SBDS gene, at chromosome 7q11. Phenotypically, the syndrome is characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, skeletal dysplasia and variable cognitive impairments. Structural brain abnormalities (smaller head circumference and decreased brain volume) have also been reported. ⋯ Diffusion tensor imaging showed large, significant difference increases in both fractional anisotropy (+37%, p < 0.0001) and mean diffusivity (+35%, p < 0.005); the Tract-based Spatial Statistics analysis identified six abnormal clusters of white matter fibres in the fronto-callosal, right fronto-external capsulae, left fronto-parietal, right pontine, temporo-mesial and left anterior-medial-temporal regions. Brain areas activated during the Stroop task and those active during the resting state, are different, fewer and smaller in patients and correlate with worse performance (p = 0.002). Cognitive impairment in Shwachman-Diamond syndrome subjects is associated with diffuse brain anomalies in the grey matter (verbal skills with BA44 and BA20 in the right hemisphere; perceptual skills with BA5, 37, 20, 21, 42 in the left hemisphere) and white matter connectivity (verbal skills with alterations in the fronto-occipital fasciculus and with the inferior-longitudinal fasciculus; perceptual skills with the arcuate fasciculus, limbic and ponto-cerebellar fasciculus; memory skills with the arcuate fasciculus; executive functions with the anterior cingulated and arcuate fasciculus).