NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2020
Microstructural damage of white-matter tracts connecting large-scale networks is related to impaired executive profile in alcohol use disorder.
Alcohol Use Disorders (AUD) is associated with negative consequences on global functioning, likely reflecting chronic changes in brain morphology and connectivity. Previous attempts to characterize cognitive impairment in AUD addressed patients' performance in single domains, without considering their cognitive profile as a whole. While altered cognitive performance likely reflects abnormal white-matter microstructural properties, to date no study has directly addressed the relationship between a proxy of patients' cognitive profile and microstructural damage. ⋯ Within a widespread pattern of white-matter damage in patients, we found diverse types of relationship linking WM microstructure and executive performance: (i) in the whole sample, we observed a linear relationship involving MD/RD metrics within both 'superficial' white-matter systems mediating connectivity within large-scale brain networks, and deeper systems modulating their reciprocal connections; (ii) in AUD patients vs. controls, a performance-by-group interaction highlighted a MD/AD pattern involving two frontal white-matter systems, including the genu of corpus callosum and cingulum bundle, mediating structural connectivity among central executive, salience and default mode networks. Alterations of prefrontal white-matter pathways are suggestive of abnormal structural connectivity in AUD, whereby a defective interplay among large-scale networks underpins patients' executive dysfunction. These findings highlight different directions for future basic and translational research aiming to tailor novel rehabilitation strategies and assess their functional outcomes.
-
NeuroImage. Clinical · Jan 2020
Structure-function relationship of the posterior subthalamic area with directional deep brain stimulation for essential tremor.
Deep Brain Stimulation of the posterior subthalamic area is an emergent target for the treatment of Essential Tremor. Due to the heterogeneous and complex anatomy of the posterior subthalamic area, it remains unclear which specific structures mediate tremor suppression and different side effects. The objective of the current work was to yield a better understanding of what anatomical structures mediate the different clinical effects observed during directional deep brain stimulation of that area. ⋯ Activation patterns for tremor suppression and side effects were similar and predominantly involved the dentato-rubro-thalamic tract and the zona incerta. We found no different activation patterns between different types of side effects and no clear correlation between structure and function. Future studies with use of more sophisticated modelling of activation volumes taking into account fiber heterogeneity and orientation may eventually better delineate these different clusters, which may allow for a refined targeting and programming within this area.
-
NeuroImage. Clinical · Jan 2020
Evaluating spatiotemporal microstructural alterations following diffuse traumatic brain injury.
Diffuse traumatic brain injury (TBI) is known to lead to microstructural changes within both white and grey matter detected in vivo with diffusion tensor imaging (DTI). Numerous studies have shown alterations in fractional anisotropy (FA) and mean diffusivity (MD) within prominent white matter tracts, but few have linked these to changes within the grey matter with confirmation via histological assessment. This is especially important as alterations in the grey matter may be predictive of long-term functional deficits. ⋯ This study confirms the widespread effects of diffuse TBI on white matter tracts which could be detected via DTI and extends these findings to key grey matter regions, with a comprehensive investigation of the whole brain. In particular, the hippocampus and thalamus appear to be vulnerable to ongoing pathology post-TBI, with DTI able to detect these alterations supporting the clinical utility in evaluating these regions post-TBI.
-
NeuroImage. Clinical · Jan 2019
Striatal DAT and extrastriatal SERT binding in early-stage Parkinson's disease and dementia with Lewy bodies, compared with healthy controls: An 123I-FP-CIT SPECT study.
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are thought to be part of a spectrum: both have a clinical profile including symptoms associated with dopaminergic and serotonergic loss, yet few imaging studies have focused on serotonergic neurodegeneration in both disorders. We aimed to study degeneration of terminals with dopamine and serotonin transporter (DAT and SERT, respectively) in patients with early-stage PD and DLB relative to healthy controls, using 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) single photon emission computed tomography (SPECT). We conducted region of interest (ROI) and voxel-based analyses on 123I-FP-CIT SPECT scans. ⋯ In the voxel-based analysis, PD and DLB patients had significantly lower striatal binding than healthy controls. Both PD patients in the early disease stages and DLB patients have reduced availability of striatal DAT, and DLB patients lower hypothalamic SERT compared with healthy controls. These observations add to the growing body of evidence that PD and DLB are not merely dopaminergic diseases, thereby providing additional clinicopathological insights.
-
NeuroImage. Clinical · Jan 2019
Multicenter StudyMicrostructural white matter network-connectivity in individuals with psychotic disorder, unaffected siblings and controls.
Altered structural network-connectivity has been reported in psychotic disorder but whether these alterations are associated with genetic vulnerability, and/or with phenotypic variation, has been less well examined. This study examined i) whether differences in network-connectivity exist between patients with psychotic disorder, siblings of patients with psychotic disorder and controls, and ii) whether network-connectivity alterations vary with (subclinical) symptomatology. ⋯ The findings indicate absence of structural network-connectivity alterations in individuals with psychotic disorder and in individuals at higher than average genetic risk for psychotic disorder, in comparison with healthy subjects. The differential subclinical symptom-network connectivity associations in siblings with respect to controls may be a sign of psychosis vulnerability in the siblings.